• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

주파수 대역별 잔향시간 추정을 위한 변형된 AWSSDR 방식 (Modified AWSSDR method for frequency-dependent reverberation time estimation)

10 페이지
기타파일
최초등록일 2025.05.11 최종저작일 2023.12
10P 미리보기
주파수 대역별 잔향시간 추정을 위한 변형된 AWSSDR 방식
  • 미리보기

    서지정보

    · 발행기관 : 한국음성학회
    · 수록지 정보 : 말소리와 음성과학 / 15권 / 4호 / 91 ~ 100페이지
    · 저자명 : 김민식, 김형순

    초록

    잔향시간(reverberation time, T60)은 대표적인 음향 매개 변수로서, 잔향에 대한 정보를 제공한다. 동일한 공간이라도 주파수 대역에 따라 잔향이 미치는 영향은 다르기 때문에, 주파수 대역별(frequency-dependent, FD) T60은 음향환경에 대한 세부적인 정보를 제공하여 유용하게 사용될 수 있다. 하지만 음성신호로부터 T60을 추정하는 기존의 블라인드 T60 추정 방식들은 대부분 전 대역 T60 추정에 집중되어 있으며, 소수의 블라인드 FDT60 추정 방식들은 공통적으로 저주파 대역에서 열악한 성능을 보인다. 본 논문은 블라인드 FDT60 추정을 위해, 이전에 제안한 주의 집중 풀링 기반 스펙트럼 감쇠율의 가중 합(Attentive pooling based Weighted Sum of Spectral Decay Rates, AWSSDR) 방식을 변형하여 목표를 전 대역 T60에서 FDT60으로 확장하였다. 본 논문에서 제안한 방식은 ACE challenge의 평가데이터 셋에 대한 성능 평가 결과, 기존의 블라인드 FDT60 추정 방식들보다 우수한 성능을 달성하였으며, 특히, 모든 주파수 대역에서 일관성 있는 우수한 추정 성능을 보였다. 이는, 잔향의 물리적인 특성과 관련된 스펙트럼 감쇠율을 주파수 대역별로 처리하여, 음성신호로부터 FDT60에 대한 정보를 취합하는, AWSSDR 방식의 매커니즘이 주파수에 따라 변하는 잔향의 영향을 반영하여 FDT60 추정에 유용함을 보여준다.

    영어초록

    Reverberation time (T60) is a typical acoustic parameter that provides information about reverberation. Since the impacts of reverberation vary depending on the frequency bands even in the same space, frequency-dependent (FD) T60, which offers detailed insights into the acoustic environments, can be useful. However, most conventional blind T60 estimation methods, which estimate the T60 from speech signals, focus on fullband T60 estimation, and a few blind FDT60 estimation methods commonly show poor performance in the low-frequency bands. This paper introduces a modified approach based on Attentive pooling based Weighted Sum of Spectral Decay Rates (AWSSDR), previously proposed for blind T60 estimation, by extending its target from fullband T60 to FDT60. The experimental results show that the proposed method outperforms conventional blind FDT60 estimation methods on the acoustic characterization of environments (ACE) challenge evaluation dataset. Notably, it consistently exhibits excellent estimation performance in all frequency bands. This demonstrates that the mechanism of the AWSSDR method is valuable for blind FDT60 estimation because it reflects the FD variations in the impact of reverberation, aggregating information about FDT60 from the speech signal by processing the spectral decay rates associated with the physical properties of reverberation in each frequency band.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“말소리와 음성과학”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 01일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:25 오후