• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

개인별 생활 루틴을 반영한 초개인화 추천 시스템 (Hyper-Personalized Recommender System Reflecting Individual Life Routine)

12 페이지
기타파일
최초등록일 2025.05.11 최종저작일 2021.12
12P 미리보기
개인별 생활 루틴을 반영한 초개인화 추천 시스템
  • 미리보기

    서지정보

    · 발행기관 : 한국자료분석학회
    · 수록지 정보 : Journal of The Korean Data Analysis Society / 23권 / 6호 / 2587 ~ 2598페이지
    · 저자명 : 주수빈, 장성봉, 전수영

    초록

    초개인화 추천 시스템은 과거 구매기록과 평점 등을 활용하여 추천하는 서비스인 ‘개인화’를 넘어서 소비자가 처한 상황과 맥락까지도 반영하는 시스템이다. 각자의 취향을 존중하는 취향의 시대로 접어들고 코로나19의 여파로 집에 있는 시간이 늘어 소비의 중심이 오프라인에서 온라인으로 전환되고 있기 때문에 다양한 연령대의 고객층을 만족시켜 소비를 유도하기 위한 초개인화 추천 시스템은 더욱더 중요한 역할을 할 것이다. OTT 서비스는 포스트 코로나 시대가 지속되면서 성장한 대표적인 산업 중 하나이고, 어느 디바이스에서도 접속 가능한 쉬운 접근성으로 이용자 수가 늘어나 비대면 문화를 이끌어가고 있다. 본 연구의 목적은 유료 OTT 서비스를 추천받고 싶어하는 소비자들에게 초개인화 추천 시스템을 사용하여 소비자들의 성향에 맞는 최적의 OTT 서비스를 추천해주는 것이다. 이를 위해, 한국미디어패널조사 데이터의 개인의 특성을 알 수 있는 개인 데이터와 초개인화 추천을 위한 개인의 생활 루틴을 알 수 있는 다이어리 데이터를 사용하여 데이터를 구축하였다. 본 연구는 개인의 성향과 특성을 잘 파악하기 위해 BSR 방법을 이용하여 유의한 변수를 선택하였고, 선택된 유의한 변수만을 사용하여 와이드 앤 딥러닝 추천 알고리즘에 적용한 추천 시스템을 제안한다. 전체 변수를 적용한 결과와 정확도를 비교해본 결과, BSR 방법을 사용한 추천 알고리즘의 결과가 더 좋은 것으로 확인되었다.

    영어초록

    Hyper-personalization recommender system (HPRS) is a system providing a service that reflects the situation and context of consumers, in addition to past purchase records and ratings. As the center of consumption is shifting from offline to online due to COVID-19, HPRS to satisfy customers of various ages is playing an important role. The OTT service is one of the representative industries that have grown as the post-COVID-19 era continues and lead to a non-face-to-face culture. The purpose of this study is to recommend optimal OTT services tailored to consumers' preferences by using a HPRS to consumers who want to be recommended for paid OTT services. To this end, we use Korean media panel survey data constructed using personal data with the characteristics of individuals and diary data with individual life routines. This study selects significant variables using the BSR method to grasp individual characteristics, and proposes a recommender system applied to a wide & deep learning algorithmin using selected significant variables. The numerical results indicate that the proposed method produces much more accurate prediction than the method including all variables.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“Journal of The Korean Data Analysis Society”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 03일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:14 오후