• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

무시할 수 없는 무응답에서 편향 보정을 이용한 무응답 대체 (Bias corrected imputation method for non-ignorable non-response)

15 페이지
기타파일
최초등록일 2025.05.02 최종저작일 2022.08
15P 미리보기
무시할 수 없는 무응답에서 편향 보정을 이용한 무응답 대체
  • 미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : 응용통계연구 / 35권 / 4호 / 485 ~ 499페이지
    · 저자명 : Min-Ha Lee, 신기일

    초록

    표본오차와 비표본오차를 포함하는 총오차(total survey error)를 관리하는 것은 표본설계에서 매우 중요하다.
    무응답으로 인해 발생한 비표본오차는 총오차에서 차지하는 비중이 매우 크며 이를 해결하는 방법인 무응답 대체에 관한 다수의 연구가 수행되었다.
    최근 전통적 통계학 관련 기법에 추가하여 기계학습 관련 기법을 이용한 무응답 대체법이 다수 연구되고 실질적으로 사용되고 있다.
    기존에 발표된 다수의 방법은 MCAR (missing completely at random) 또는 MAR (missing at random) 가정을 사용하고 있다.
    그러나 관심변수에 영향을 받는 MNAR (missing not at random) 또는 무시할 수 없는 무응답 (non-ignorable non-response; NN)은 편향을 발생시켜대체 결과의 정확성을 크게 떨어뜨리지만 이에 관한 연구는 상대적으로 미미하다.
    본 연구에서는 무시할 수 없는 무응답이 발생한 경우에 적용 가능한 무응답 대체법을 제안하였다.
    특히 편향을 추정한 후 이를 제거하는 방법을 이용하여 무응답 대체 결과의 정확성을 향상하는 방법을 제안하였다.
    또한, 모의실험을 이용하여 제안된 방법의 타당성을 확인하였다.

    영어초록

    Controlling the total survey error including sampling error and non-sampling error is very important in sampling design.
    Non-sampling error caused by non-response accounts for a large proportion of the total survey error.
    Many studies have been conducted to handle non-response properly.
    Recently, a lot of non-response imputation methods using machine learning technique and traditional statistical methods have been studied and practically used.
    Most imputation methods assume MCAR(missing completely at random) or MAR(missing at random) and few studies have been conducted focusing on MNAR (missing not at random) or NN(non-ignorable non-response) which cause bias and reduce the accuracy of imputation.
    In this study, we propose a non-response imputation method that can be applied to non-ignorable non-response.
    That is, we propose an imputation method to improve the accuracy of estimation by removing the bias caused by NN.
    In addition, the superiority of the proposed method is confirmed through small simulation studies.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“응용통계연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:35 오전