• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

수용성 판단 실험의 설계 및 통계 분석 처리의 몇 문제- 서열형·연속형 데이터를 중심으로 - (Some issues in designing and analyzing Korean ordinal and continuous acceptability judgment experiments)

27 페이지
기타파일
최초등록일 2025.04.30 최종저작일 2023.09
27P 미리보기
수용성 판단 실험의 설계 및 통계 분석 처리의 몇 문제- 서열형·연속형 데이터를 중심으로 -
  • 미리보기

    서지정보

    · 발행기관 : 한말연구학회
    · 수록지 정보 : 한말연구 / 64권 / 42호 / 1 ~ 27페이지
    · 저자명 : 조용준

    초록

    Acceptability judgment experiments, often conducted as surveys, offer the advantage of obtaining a large amount of data with minimal time, effort, or cost. However, conducting acceptability judgment experiments involves several considerations. First is the issue related to the sensitivity of result analysis, second is related to the identification of careless responses, and third pertains to the statistical analysis of result data. This study empirically investigates these issues, focusing on ordinal data and continuous data.
    Sensitivity, represented by statistical power, was assessed across various effect sizes with sample sizes ranging from 5 to 100, each simulated with 1,000 resamplings. Similar to Sprouse & Almeida 2017, for the Likert scale(LS), it was found that a minimum of 9 participants is required for an extra-large effect size, 19 for a large effect size, and 51 for a medium effect size. For the magnitude estimation(ME), in the case of an extra-large effect size, at least 11 participants are needed, 25 for a large effect size, and 75 for a medium effect size. In both methods, for a small effect size, statistical power did not reach 80%.
    Additionally, relying on crowd-sourced large-scale acceptability judgment experiments, 30 standard sentences (gold standard) for identifying careless responses were provided, consisting of 30 grammatical and 30 ungrammatical sentences. These could be useful for developing practice items and items for identifying careless responders. Moreover, 20 sentences are presented for designing practice items, for participants to grasp a possible range of of acceptability judgments. This is expected to be very helpful in designing acceptability judgment experiments.
    Finally, we examined various possible statistical analyses for ordinal and continuous data. For ordinal data, there are methods such as standardization for statistical analysis or multivariate cumulative logit analysis using raw values. For continuous data, there are methods such as standardization or natural logarithm transformation for statistical analysis. As an example, for each of the four syntactic phenomena, 200 samples were randomly selected, and statistical analyses were compared. Overall, we suggest that standardizing ordinal data for statistical analysis is preferable.

    영어초록

    Acceptability judgment experiments, often conducted as surveys, offer the advantage of obtaining a large amount of data with minimal time, effort, or cost. However, conducting acceptability judgment experiments involves several considerations. First is the issue related to the sensitivity of result analysis, second is related to the identification of careless responses, and third pertains to the statistical analysis of result data. This study empirically investigates these issues, focusing on ordinal data and continuous data.
    Sensitivity, represented by statistical power, was assessed across various effect sizes with sample sizes ranging from 5 to 100, each simulated with 1,000 resamplings. Similar to Sprouse & Almeida 2017, for the Likert scale(LS), it was found that a minimum of 9 participants is required for an extra-large effect size, 19 for a large effect size, and 51 for a medium effect size. For the magnitude estimation(ME), in the case of an extra-large effect size, at least 11 participants are needed, 25 for a large effect size, and 75 for a medium effect size. In both methods, for a small effect size, statistical power did not reach 80%.
    Additionally, relying on crowd-sourced large-scale acceptability judgment experiments, 30 standard sentences (gold standard) for identifying careless responses were provided, consisting of 30 grammatical and 30 ungrammatical sentences. These could be useful for developing practice items and items for identifying careless responders. Moreover, 20 sentences are presented for designing practice items, for participants to grasp a possible range of of acceptability judgments. This is expected to be very helpful in designing acceptability judgment experiments.
    Finally, we examined various possible statistical analyses for ordinal and continuous data. For ordinal data, there are methods such as standardization for statistical analysis or multivariate cumulative logit analysis using raw values. For continuous data, there are methods such as standardization or natural logarithm transformation for statistical analysis. As an example, for each of the four syntactic phenomena, 200 samples were randomly selected, and statistical analyses were compared. Overall, we suggest that standardizing ordinal data for statistical analysis is preferable.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 06일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:21 오전