PARTNER
검증된 파트너 제휴사 자료

심층 신경망을 이용한 대기질 예측 (Air Quality Prediction Using a Deep Neural Network Model)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
12 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2019.04
12P 미리보기
심층 신경망을 이용한 대기질 예측
  • 미리보기

    서지정보

    · 발행기관 : 한국대기환경학회
    · 수록지 정보 : 한국대기환경학회지 / 35권 / 2호 / 214 ~ 225페이지
    · 저자명 : 조경학, 이병영, 권명흠, 김석철

    초록

    A deep neural network (DNN) model of multi-layer perceptron with 3 or 4 hidden layers is developed to predict the air qualities. The DNN model takes the past 3 days of the hourly concentration measurements of the pollutants (CO, SO2, NO2, O3, PM10, PM2.5) and the meteorology data (wind speed, wind direction, air temperature, air humidity), and then predicts the hourly concentration of the pollutants for the next 24 hours. The DNN model was compared against the observations from all nationwide air quality monitoring stations which includes 115 sites in 7 metropolitan cities in South Korea. The index of agreement (IOA) was found to be 0.7~0.8, based upon the 6,505 comparison data sets from January 1, 2017 to September 30, 2017. In the unit of air quality grade, which can be evaluated from the pollutant concentration level, 60%~80% cases of the DNN predictions agree with those of the observations. For the region-wide PM10 grade, the DNN predicts exactly the 75%~85% cases of the observations, which is in about the same accuracy range of the numerical air quality models of the current operative use. Yet, for the region-wide PM2.5 grade, the cases of the accurate predictions of DNN is about twice of those of the numerical model. In the metropolitan Gwangju, for an example, the DNN predicts exactly the 211 next days of the PM2.5 grade, while the numerical model forecasts just 120 days correctly.

    영어초록

    A deep neural network (DNN) model of multi-layer perceptron with 3 or 4 hidden layers is developed to predict the air qualities. The DNN model takes the past 3 days of the hourly concentration measurements of the pollutants (CO, SO2, NO2, O3, PM10, PM2.5) and the meteorology data (wind speed, wind direction, air temperature, air humidity), and then predicts the hourly concentration of the pollutants for the next 24 hours. The DNN model was compared against the observations from all nationwide air quality monitoring stations which includes 115 sites in 7 metropolitan cities in South Korea. The index of agreement (IOA) was found to be 0.7~0.8, based upon the 6,505 comparison data sets from January 1, 2017 to September 30, 2017. In the unit of air quality grade, which can be evaluated from the pollutant concentration level, 60%~80% cases of the DNN predictions agree with those of the observations. For the region-wide PM10 grade, the DNN predicts exactly the 75%~85% cases of the observations, which is in about the same accuracy range of the numerical air quality models of the current operative use. Yet, for the region-wide PM2.5 grade, the cases of the accurate predictions of DNN is about twice of those of the numerical model. In the metropolitan Gwangju, for an example, the DNN predicts exactly the 211 next days of the PM2.5 grade, while the numerical model forecasts just 120 days correctly.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:40 오전