• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

L1-회귀추정량의 붕괴점 향상을 위한 알고리즘 (Algorithm for the L1-Regression Estimation with High Breakdown Point)

10 페이지
기타파일
최초등록일 2025.04.18 최종저작일 2010.07
10P 미리보기
L1-회귀추정량의 붕괴점 향상을 위한 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : Communications for Statistical Applications and Methods / 17권 / 4호 / 541 ~ 550페이지
    · 저자명 : 김부용

    초록

    L1-회귀추정량이 수직이상점에 대해서는 매우 로버스트하지만 지렛점에 대해서는 전혀 로버스트하지 않다는 사실은 잘 알려져 있다. 본 논문에서는 수직이상점은 물론 지렛점에 대해서도 로버스트한 L1-회귀추정을 위한 알고리즘을 제안한다. MCD 또는 MVE-추정량에 바탕을 둔 로버스트거리를 기준으로 지렛점들을 식별하고, 식별된 지렛점들의 영향력을 적절히 감소시키기 위한 가중치를 결정한다. 가중치에 의해 변환된 자료에 선형척도변환 기법에 바탕을 둔 선형계획 알고리즘을 적용함으로써 L_1-회귀추정량의 붕괴점을 향상시킨다. 다양한 형태와 규모의 자료에 대한 모의실험 결과, 제안된 알고리즘에 의한 L_1-회귀추정량의 붕괴점이 크게 향상되는 것으로 나타났다.

    영어초록

    The L1-regression estimator is susceptible to the leverage points, even though it is highly robust to the vertical outliers. This article is concerned with the improvement of robustness of the L1-estimator. To improve its robustness, in terms of the breakdown point, we attempt to dampen the influence of the leverage points by means of reducing the weights corresponding to the leverage points. In addition the algorithm employs the linear scaling transformation technique, for higher computational efficiency with the large data sets, to solve the linear programming problem of L1-estimation. Monte Carlo simulation results indicate that the proposed algorithm yields L1-estimates which are robust to the leverage points as well as the vertical outliers.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 04일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:35 오후