PARTNER
검증된 파트너 제휴사 자료

텍스트마이닝 분석을 활용한 디카페인 커피에 대한 소비자 인식 분석 연구 (A Study on Consumer Perception of Decaffeinated Coffee Using Text-Mining Analysis)

16 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2024.04
16P 미리보기
텍스트마이닝 분석을 활용한 디카페인 커피에 대한 소비자 인식 분석 연구
  • 미리보기

    서지정보

    · 발행기관 : (사)한국조리학회
    · 수록지 정보 : Culinary Science & Hospitality Research / 30권 / 4호 / 71 ~ 86페이지
    · 저자명 : 박병현, 김준형, 남장현

    초록

    This study aims to understand consumer perception and trends related to decaffeinated coffee through text mining text analytics), identifying key keywords connected to decaffeinated coffee. From March 14, 2019, to March 13, 2023, text documents on the network were collected, and the collected data underwent refining processes using Textom. A total of 14,204 pieces of data were collected, and after preprocessing to remove unnecessary data, a refined dataset of 7.7 MB was obtained. The collected and refined data were analyzed using natural language processing for frequency analysis, co-occurrence frequency analysis, revealing key keywords. The relationships between keywords were analyzed through connection structure and centrality analysis. Based on this, cluster analysis was conducted, identifying four core keyword clusters with structural similarity. Sentiment analysis on consumer emotions regarding decaffeinated coffee was conducted using the sentiment dictionary provided by Textom. The results of text mining analysis are as follows. Firstly, it was observed that ‘franchises’ are prominently discussed in decaffeinated-related documents. Secondly, centrality analysis for network connection structure revealed a close association between decaffeinated and coffee, followed by a strong connection to franchises. Centrality analysis was used to understand the network structure of keywords related to decaffeinated coffee, which were primarily associated with the attributes, taste, and purchase intentions of decaffeinated coffee. Thirdly, through CONCOR analysis, four key groups were identified, focusing on consumer experiences with decaffeinated coffee, health-related concerns, interest in new products, and personal transactions. Particularly, health-related keywords significantly influenced consumer concerns regarding caffeine's adverse effects and their interest in decaffeinated coffee. Given the steady growth of the decaffeinated coffee market, the importance of utilizing these research findings for marketing strategy analysis and further research on decaffeinated coffee is evident.

    영어초록

    This study aims to understand consumer perception and trends related to decaffeinated coffee through text mining text analytics), identifying key keywords connected to decaffeinated coffee. From March 14, 2019, to March 13, 2023, text documents on the network were collected, and the collected data underwent refining processes using Textom. A total of 14,204 pieces of data were collected, and after preprocessing to remove unnecessary data, a refined dataset of 7.7 MB was obtained. The collected and refined data were analyzed using natural language processing for frequency analysis, co-occurrence frequency analysis, revealing key keywords. The relationships between keywords were analyzed through connection structure and centrality analysis. Based on this, cluster analysis was conducted, identifying four core keyword clusters with structural similarity. Sentiment analysis on consumer emotions regarding decaffeinated coffee was conducted using the sentiment dictionary provided by Textom. The results of text mining analysis are as follows. Firstly, it was observed that ‘franchises’ are prominently discussed in decaffeinated-related documents. Secondly, centrality analysis for network connection structure revealed a close association between decaffeinated and coffee, followed by a strong connection to franchises. Centrality analysis was used to understand the network structure of keywords related to decaffeinated coffee, which were primarily associated with the attributes, taste, and purchase intentions of decaffeinated coffee. Thirdly, through CONCOR analysis, four key groups were identified, focusing on consumer experiences with decaffeinated coffee, health-related concerns, interest in new products, and personal transactions. Particularly, health-related keywords significantly influenced consumer concerns regarding caffeine's adverse effects and their interest in decaffeinated coffee. Given the steady growth of the decaffeinated coffee market, the importance of utilizing these research findings for marketing strategy analysis and further research on decaffeinated coffee is evident.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:38 오후