PARTNER
검증된 파트너 제휴사 자료

두 층 관측 기상인자의 주성분-다중회귀분석으로 도출되는 고농도 미세먼지의 부산-서울 지역차이 해석 (Interpretation and Comparison of High PM2.5 Characteristics in Seoul and Busan based on the PCA/MLR Statistics from Two Level Meteorological Observations)

15 페이지
기타파일
최초등록일 2025.04.14 최종저작일 2021.03
15P 미리보기
두 층 관측 기상인자의 주성분-다중회귀분석으로 도출되는 고농도 미세먼지의 부산-서울 지역차이 해석
  • 미리보기

    서지정보

    · 발행기관 : 한국기상학회
    · 수록지 정보 : 대기 / 31권 / 1호 / 29 ~ 43페이지
    · 저자명 : 최다니엘, 장임석, 김철희

    초록

    In this study, two-step statistical approach including Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) was employed, and main meteorological factors explaining the high-PM2.5 episodes were identified in two regions: Seoul and Busan. We first performed PCA to isolate the Principal Component (PC) that is linear combination of the meteorological variables observed at two levels: surface and 850 hPa level. The employed variables at surface are: temperature (T2m), wind speed, sea level pressure, south-north and west-east wind component and those at 850 hPa upper level variables are: south-north (v850) and west-east (u850) wind component and vertical stability. Secondly we carried out MLR analysis and verified the relationships between PM2.5 daily mean concentration and meteorological PCs. Our two-step statistical approach revealed that in Seoul, dominant factors for influencing the high PM2.5 days are mainly composed of upper wind characteristics in winter including positive u850 and negative v850, indicating that continental (or Siberian) anticyclone had a strong influence. In Busan, however, the dominant factors in explanaining in high PM2.5 concentrations were associated with high T2m and negative u850 in summer. This is suggesting that marine anticyclone had a considerable effect on Busan’s high PM2.5 with high temperature which is relevant to the vigorous photochemical secondary generation. Our results of both differences and similarities between two regions derived from only statistical approaches imply the high-PM2.5 episodes in Korea show their own unique characteristics and seasonality which are mostly explainable by two layer (surface and upper) mesoscale meteorological variables.

    영어초록

    In this study, two-step statistical approach including Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) was employed, and main meteorological factors explaining the high-PM2.5 episodes were identified in two regions: Seoul and Busan. We first performed PCA to isolate the Principal Component (PC) that is linear combination of the meteorological variables observed at two levels: surface and 850 hPa level. The employed variables at surface are: temperature (T2m), wind speed, sea level pressure, south-north and west-east wind component and those at 850 hPa upper level variables are: south-north (v850) and west-east (u850) wind component and vertical stability. Secondly we carried out MLR analysis and verified the relationships between PM2.5 daily mean concentration and meteorological PCs. Our two-step statistical approach revealed that in Seoul, dominant factors for influencing the high PM2.5 days are mainly composed of upper wind characteristics in winter including positive u850 and negative v850, indicating that continental (or Siberian) anticyclone had a strong influence. In Busan, however, the dominant factors in explanaining in high PM2.5 concentrations were associated with high T2m and negative u850 in summer. This is suggesting that marine anticyclone had a considerable effect on Busan’s high PM2.5 with high temperature which is relevant to the vigorous photochemical secondary generation. Our results of both differences and similarities between two regions derived from only statistical approaches imply the high-PM2.5 episodes in Korea show their own unique characteristics and seasonality which are mostly explainable by two layer (surface and upper) mesoscale meteorological variables.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:57 오후