• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

기계학습을 활용한 동아시아 지역의 TROPOMI 기반 SO2 지상농도 추정 (Estimation of TROPOMI-derived Ground-level SO2 Concentrations Using Machine Learning Over East Asia)

16 페이지
기타파일
최초등록일 2025.04.13 최종저작일 2021.04
16P 미리보기
기계학습을 활용한 동아시아 지역의 TROPOMI 기반 SO2 지상농도 추정
  • 미리보기

    서지정보

    · 발행기관 : 대한원격탐사학회
    · 수록지 정보 : 대한원격탐사학회지 / 37권 / 2호 / 275 ~ 290페이지
    · 저자명 : 최현영, 강유진, 임정호

    초록

    대기 중의 이산화황(SO2)은 주로 인위적 배출원에 의해 발생하며 화학 반응을 통해 (초)미세먼지를 형성하여 직간접적으로 주변 환경 및 인체 건강에 해로운 영향을 주는 물질이다. 특히 지상에서의 농도는 인간 활동과 밀접한 관련이 있어 모니터링의 필요성이 매우 크다. 따라서, 본 연구에서는 TROPOMI SO2 연직 컬럼 농도 산출물 및 타 위성 산물과 모델 산출물 등을 융합 활용하여 기계학습 기법에 적용하여 SO2 지상 농도 추정모델을 개발하였다. 기계학습 기법으로는 널리 활용되고 있는 RF(Random Forest)에 잔차 보정 과정을 결합한2-step 잔차 보정 RF를 적용하였다. 개발된 모델은 무작위, 공간 및 시간별 10-fold 교차 검증을 통하여 검증하였으며, 기울기(slope) 값이 1.14-1.25, 상관계수(R) 값이 0.55-0.65, rRMSE 값이 약 58-63% 정도로 나타났다. 이는잔차 보정이 적용되지 않은 기존의 RF 대비 slope의 경우 약 10%, R과 rRMSE의 경우 약 3% 가량 향상된 결과를 보인다. 국가별로 나누어 분석하였을 때에는 샘플 수가 적고 SO2의 전반적인 농도가 낮은 일본 지역에서의공간별 10-fold 교차검증 성능이 소폭 감소하는 것으로 나타났다. SO2 지상농도 분포를 계절별로 표출하였을때, 일본의 경우 다른 지역 대비 연중 저농도가 관찰되며 높은 결측 값 비율로 인하여 관측소 농도 대비 2-step 잔차 보정 RF 모델에서 과대 모의하는 경향이 관찰되었다. 대표적 고농도 발생지인 중국의 YRD(Yangtze River Delta) 와 한국의 SMA(Seoul Metropolitan Area)의 계절적 분포 변화를 추가적으로 분석하였을 때, 연료 연소로인한 겨울철 농도 증가 패턴이 나타났다. 이는 인위적 배출원의 영향을 크게 받는 SO2의 시공간적인 분포 특성을 잘 반영하고 있는 결과이다. 따라서, 본 연구를 통하여 제안한 모델은 장기적으로 SO2 지상 농도의 시공간적분포를 파악하는 데에 활용될 수 있을 것으로 기대된다.

    영어초록

    Sulfur dioxide (SO2) in the atmosphere is mainly generated from anthropogenic emission sources. It forms ultra-fine particulate matter through chemical reaction and has harmful effect on both the environment and human health. In particular, ground-level SO2 concentrations are closely related to human activities. Satellite observations such as TROPOMI (TROPOspheric Monitoring Instrument)- derived column density data can provide spatially continuous monitoring of ground-level SO2 concentrations. This study aims to propose a 2-step residual corrected model to estimate ground-level SO2 concentrations through the synergistic use of satellite data and numerical model output. Random forest machine learning was adopted in the 2-step residual corrected model. The proposed model was evaluated through three cross-validations (i.e., random, spatial and temporal). The results showed that the model produced slopes of 1.14-1.25, R values of 0.55-0.65, and relative root-mean-square-error of 58-63%, which were improved by 10% for slopes and 3% for R and rRMSE when compared to the model without residual correction. The model performance by country was slightly reduced in Japan, often resulting in overestimation, where the sample size was small, and the concentration level was relatively low. The spatial and temporal distributions of SO2 produced by the model agreed with those of the in-situmeasurements, especially over Yangtze River Delta in China and Seoul Metropolitan Area in South Korea, which are highly dependent on the characteristics of anthropogenic emission sources. The model proposed in this study can be used for long-term monitoring of ground-level SO2 concentrations on both the spatial and temporal domains.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한원격탐사학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:52 오후