• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

OpenCL을 이용한 랜더링 노이즈 제거를 위한 뉴럴네트워크 가속기 구현 (Implementation of Neural Network Accelerator for Rendering Noise Reduction on OpenCL)

5 페이지
기타파일
최초등록일 2025.04.03 최종저작일 2018.11
5P 미리보기
OpenCL을 이용한 랜더링 노이즈 제거를 위한 뉴럴네트워크 가속기 구현
  • 미리보기

    서지정보

    · 발행기관 : 국제문화기술진흥원
    · 수록지 정보 : 문화기술의 융합 / 4권 / 4호 / 373 ~ 377페이지
    · 저자명 : 남기훈

    초록

    본 논문에서는 OpenCL을 이용한 랜더링 노이즈 제거를 위한 가속기 구현을 제안한다. 렌더링 알고리즘 중에 고품질 그래픽스를 보장하는 레이트레이싱을 선택하였다. 레이 트레이싱은 레이를 사용하여 렌더링하는데 레이를 적게 사용하면 노이즈가 발생한다. 레이를 많이 사용하게 되면 고화질의 이미지를 생성할 수 있으나 연산 시간이 상대적으로 길어지게 된다. 레이를 적게 사용하면서 연산시간을 줄이기 위해 뉴럴 네트워크를 이용한 LBF(Learning Based Filtering) 알고리즘을 적용하였다. 뉴럴 네트워크를 사용한다고 해서 항상 최적의 결과가 나오지는 않는다. 본 논문에서는 성능향상을 위해 일반적인 행렬 곱셈을 기반으로 하는 새로운 기법의 행렬 곱셈 접근법을 제시하였다. 개발환경으로는 고속병렬 처리가 특화된 OpneCL을 사용하였다. 제안하는 구조는 Kintex UltraScale XKU690T- 2FDFG1157C FPGA 보드에서 검증하였다. 하나의 픽셀에 사용되는 파라미터를 계산 시간은 Verilog-HDL 구조보다 약 1.12배 빠른 것으로 확인했다.

    영어초록

    In this paper, we propose an implementation of a neural network accelerator for reducing the rendering noise using OpenCL. Among the rendering algorithms, we selects a ray tracing to assure a high quality graphics. Ray tracing rendering uses ray to render, less use of the ray will result in noise. Ray used more will produce a higher quality image but will take operation time longer. To reduce operation time whiles using fewer rays, Learning Base Filtering algorithm using neural network was applied. it's not always produce optimize result. In this paper, a new approach to Matrix Multiplication that is based on General Matrix Multiplication for improved performance. The development environment, we used specialized in high speed parallel processing of OpenCL. The proposed architecture was verified using Kintex UltraScale XKU6909T-2FDFG1157C FPGA board. The time it takes to calculate the parameters is about 1.12 times fast than that of Verilog-HDL structure.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“문화기술의 융합”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 콘크리트 마켓 시사회
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 25일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:59 오후