PARTNER
검증된 파트너 제휴사 자료

다변량 경시적 자료에서 공분산 행렬의 AR구조와 ARMA구조의 비교 (Comparison between AR and ARMA covariance matrices for multivariate longitudinal data)

20 페이지
기타파일
최초등록일 2025.03.21 최종저작일 2020.09
20P 미리보기
다변량 경시적 자료에서 공분산 행렬의 AR구조와 ARMA구조의 비교
  • 미리보기

    서지정보

    · 발행기관 : 한국데이터정보과학회
    · 수록지 정보 : 한국데이터정보과학회지 / 31권 / 5호 / 721 ~ 740페이지
    · 저자명 : 윤단비, 이근백

    초록

    다변량 경시적 자료에서 반복 측정된 자료들 사이에는 응답변수들 간의 세 가지 형태의 상관관계가 존재한다: 다른 시점에서 다른 반응변수들 간의 상관관계, 다른 시점에서의 동일한 반응변수들 간의 상관관계, 그리고 같은 시점에서의 반응변수들 간의 상관관계. 따라서 다변량 경시적 자료분석에서는 이러한 상관관계들을 모두 가지는 공분산행렬을 고려하여 모형화하는 것이 중요하다. 하지만 이러한 공분산행렬은 양정치성 (positive definiteness)을 만족해야 하고, 때로는 이분산성 (heterogeneous)을 가질 수 있다. 또한 반복 측정 횟수가 증가함에 따라 공분산행렬의 모수의 수는 기하급수적으로 증가하여 추정하기가 쉽지 않다. 이 어려움들을 해결하기 위해 자기회귀 (autoregressive) 구조, 자기회귀-이동평균 (autoregressive-moving average) 구조를 가지는 공분산 행렬의 모형화 방법이 제안되었다. Lee 등 (2020)과 Lee 등 (2019)은 다변량 경시적 자료분석에서 각각 자기회귀 구조와 자기회귀-이동평균 구조의 공분산 행렬을 분해방법을 제안하였고, 또한 이러한 분석방법으로 추정된 공분산행렬은 항상 양정치성을 만족하고, 이분산성을 가질 수 있다. 본 논문에서는 이 두 방법을 모의실험을 통하여 서로 비교하고자 한다.

    영어초록

    In multivariate longitudinal data, there are three correlations: correlation within separate responses over time, cross-correlation between response at different times, and correlation between responses at each time point. Therefore, it is important to model the covariance matrix with the correlations. However, the covariance matrix for multivariate longitudinal data must be positive definite and the number of parameters in the covariance matrix increases exponentially as dimension increases. In order to solve the difficulties, the modeling of the covariance matrix with an autoregressive (AR) structure and an autoregressive moving average (ARMA) structure are proposed. Lee et al. (2020) proposed decomposition method assuming covariance matrix with autoregressive structure in multivariate longitudinal data analysis. Lee et al. (2019) extended Lee et al.'s (2020) method to accommodate long series of multivariate longitudinal data using autoregressive-moving average covariance matrix. In this paper, we compare these two methods through simulations.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 03일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:55 오후