PARTNER
검증된 파트너 제휴사 자료

결측치를 포함한 데이터의 k-평균 군집분석 방법 비교 (Comparison of k-mean clustering with missing data)

12 페이지
기타파일
최초등록일 2025.03.17 최종저작일 2023.12
12P 미리보기
결측치를 포함한 데이터의 k-평균 군집분석 방법 비교
  • 미리보기

    서지정보

    · 발행기관 : 한국자료분석학회
    · 수록지 정보 : Journal of The Korean Data Analysis Society / 25권 / 6호 / 2131 ~ 2142페이지
    · 저자명 : 양대경, 명재성, 이승훈, 송주원

    초록

    군집분석이란 개체 간 유사성을 포착하여 유사한 특징을 공유하는 개체들을 동일 군집으로 모으고 이질적인 개체들을 다른 군집을 정의해내는 비지도 학습 방법이다. 다양한 군집분석 방법이 제안되어 있으며 최적화 군집 방법 중 각 군집의 중심과 개체 간의 유클리디안 거리를 최소화하는 k-평균 군집분석은 가장 기본적인 방법으로 널리 사용되고 있다. 하지만 데이터에 결측이 존재하는 경우, 각 군집의 중심에서 결측이 발생한 개체까지의 거리를 계산하는 것이 불가능하므로 결측자료는 군집으로 분류되지 않는 문제가 발생하며 결측 자료를 제외한 군집분석의 결과는 예측하기 어렵다. 이러한 상황에 대해 대처하기 위해 결측치가 발생하더라도 관측된 정보만을 근거하여 군집분석을 수행하거나 결측치를 대체한 후 군집분석을 수행하는 다양한 방법들이 제안되어 있다. 본 연구에서는 결측 자료를 포함하고 있는 데이터에 대해 k-평균 군집분석을 수행할 방법들을 탐구하였으며, 모의실험을 통해 해당 방법들의 성능을 평가하였다. 모의실험을 통한 평가 결과, 결측치를 대체한 다음 k-평균 군집분석을 수행하는 것이 가장 좋은 성능을 보였으며, 결측치 대체 방법 중에서는 k-최근접 이웃(k-nearest neighbors) 대체가 가장 좋은 성능을 보였다.

    영어초록

    Cluster analysis is an unsupervised learning method to find heterogeneous clusters that capture similarities among items and separate different items into different clusters. Various cluster analysis techniques have been proposed, and the k-means clustering method, which minimizes the sum of Euclidean distances between cluster centroids and individual entities, is widely recognized as a standard cluster analysis method. When data include missing values, it is challenging to conduct cluster analysis, because it is impossible to calculate distances between centroids of clusters and incomplete items, resulting in excluding classification of these items. Techniques have been suggested to handle missing values in k-means clustering, including conducting cluster analysis after imputation of missing values or cluster analysis based on available information. In this study, we explore methods to perform k-means cluster analysis on data with missing values and evaluate performance of these methods using a simulation. The results of simulation studies indicate that conducting k-means cluster analysis after imputation yields the better performance than the one based on available information. Among the various imputation methods, k-nearest neighbors imputation performed the best.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“Journal of The Korean Data Analysis Society”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 05일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:37 오전