• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

최적화된 Gradient-Boost를 사용한 서울 자전거 데이터의 결정 요인 예측 (Predicting Determinants of Seoul-Bike Data Using Optimized Gradient-Boost)

6 페이지
기타파일
최초등록일 2025.03.15 최종저작일 2022.11
6P 미리보기
최적화된 Gradient-Boost를 사용한 서울 자전거 데이터의 결정 요인 예측
  • 미리보기

    서지정보

    · 발행기관 : 국제문화기술진흥원
    · 수록지 정보 : 문화기술의 융합 / 8권 / 6호 / 861 ~ 866페이지
    · 저자명 : 김차영, 김윤

    초록

    서울시에서는 공유 자전거 시스템, “따릉이”를 2015년부터 도입, 운영하여, 교통량 감축과 대기오염 해소를 위해 노력하고 있다. 하지만 공유 자전거 시스템, “따릉이”의 운영전략 미훕으로 인해 많은 문제가 발생하고 있어 이를 해결하고자 다양한 연구들이 제시되고 있다. 이들 연구의 대다수는 수요와 공급의 불균형을 해결하고자 하는 전략적 “자전거 배치”에 집중되어 있으며 또한 이들 중 다수가 날씨나 계절과 같은 특징을 그룹화함으로써 수요를 예측하고 있다. 그리고 이전에는 이들 예측방법이 주로 시계열 분석을 기반으로 하고 있었으나 최근에는 딥러닝/머신러닝으로 수요를 예측하는 연구들이 속속 등장하고 있다. 본 논문에서는 기존에 제시된 다양한 특징들을 기반으로 하면서, 새로운 특징을 발견하고 선택된 특징들의 중요도를 비교, 이를 순서화함으로써, 보다 정확한 수요 예측이 가능함을 보인다. 그리하여, 우리는 기존의 딥러닝/머신러닝 및 시계열 분석을 그대로 사용하면서 비교적 정확한 결정계수를 획득하고 이를 이용해 개선된 수요예측이 가능하도록 한다.

    영어초록

    Seoul introduced the shared bicycle system, “Seoul Public Bike” in 2015 to help reduce traffic volume and air pollution. Hence, to solve various problems according to the supply and demand of the shared bicycle system, “Seoul Public Bike,” several studies are being conducted. Most of the research is a strategic “Bicycle Rearrangement” in regard to the imbalance between supply and demand. Moreover, most of these studies predict demand by grouping features such as weather or season. In previous studies, demand was predicted by time-series-analysis. However, recently, studies that predict demand using deep learning or machine learning are emerging. In this paper, we can show that demand prediction can be made a little better by discovering new features or ordering the importance of various features based on well-known feature-patterns. In this study, by ordering the selection of new features or the importance of the features, a better coefficient of determination can be obtained even if the well-known deep learning or machine learning or time-series-analysis is exploited as it is. Therefore, we could be a better one for demand prediction.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“문화기술의 융합”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 01일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:59 오후