PARTNER
검증된 파트너 제휴사 자료

뜰개 이동 예측을 위한 신경망 및 통계 기반 기계학습 기법의 성능 비교 (Performance Comparison of Machine Learning Based on Neural Networks and Statistical Methods for Prediction of Drifter Movement)

8 페이지
기타파일
최초등록일 2025.03.14 최종저작일 2017.10
8P 미리보기
뜰개 이동 예측을 위한 신경망 및 통계 기반 기계학습 기법의 성능 비교
  • 미리보기

    서지정보

    · 발행기관 : 한국융합학회
    · 수록지 정보 : 한국융합학회논문지 / 8권 / 10호 / 45 ~ 52페이지
    · 저자명 : 이찬재, 김경도, 김용혁

    초록

    뜰개는 해양에서 해수의 특성 및 흐름을 관측하기 위한 장비로서, 해수의 흐름 관측을 이용해 유출유 확산 예측을 위해 사용될 수 있다. 본 논문에서는 관측기관에서 사용하는 뜰개가 특정 시간 간격으로 관측한 바람 및 해수의 특성과 이동경로를 기계학습 기법들을 이용하여 학습시키고 예측하는 모델을 제안한다. 서포트벡터 회귀, 방사기저함수 네트워크, 가우시안 프로세스, 다층 퍼셉트론, 순환신경망을 이용하여 뜰개의 이동경로 예측 방법을 제시한다. 기존 MOHID 수치모델과 비교하여 각 기법별로 4 개의 사례중 3 개에서 성능이 개선되었으며, 가장 좋은 개선율을 보인 기법은 LSTM으로 평균 47.59% 개선되었다. 추후 연구에서는 배깅과 부스팅을 이용하여 가중치를 부여하여 정확도를 개선할 예정이다.

    영어초록

    Drifter is an equipment for observing the characteristics of seawater in the ocean, and it can be used to predict effluent oil diffusion and to observe ocean currents. In this paper, we design models or the prediction of drifter trajectory using machine learning. We propose methods for estimating the trajectory of drifter using support vector regression, radial basis function network, Gaussian process, multilayer perceptron, and recurrent neural network. When the propose mothods were compared with the existing MOHID numerical model, performance was improve on three of the four cases. In particular, LSTM, the best performed method, showed the imporvement by 47.59% Future work will improve the accuracy by weighting using bagging and boosting.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국융합학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:42 오후