· Pegg A. E. The function of spermine. IUBMB life, 66(1), 8–18. (2014)
· https://doi.org/10.1002/iub.1237
· Casero, R.A., Murray Stewart, T. & Pegg, A.E. Polyamine metabolism and
· cancer: treatments, challenges and opportunities. Nat Rev Cancer 18, 681–695
· (2018). https://doi.org/10.1038/s41568-018-0050-3
· Hayashi Y., Sugiyama H., Suganami A., Higashi K., Kashiwagi K., Igarashi
· K., Kawauchi S., Tamura Y.. Prediction of the interaction between spermidine
· and the G-G mismatch containing acceptor stem in tRNA(Ile): Molecular
· modeling, density functional theory, and molecular dynamics study, Biochem.
· Biophys. Res. Commun., 441 (pg. 999-1004) (2013)
· Casero, R. A. & Pegg, A. E. Polyamine catabolism and disease. Biochem. J. 421,
· 323–338 (2009).
· Pegg, A. E. Spermidine/spermine- N(1)-acetyltransferase: a key metabolic
· regulator. Am. J. Physiol. Endocrinol. Metab. 294, E995–E1010 (2008).
· Uemura, T., Stringer, D. E., Blohm- Mangone, K. A. & Gerner, E. W.
· Polyamine transport is mediated by both endocytic and solute carrier transport
· mechanisms in the gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver
· Physiol. 299, G517–G522 (2010).
· Amin, M., Tang, S., Shalamanova, L., Taylor, R. L., Wylie, S., Abdullah, B. M.,
· & Whitehead, K. A. Polyamine biomarkers as indicators of human disease.
· Biomarkers : biochemical indicators of exposure, response, and susceptibility to
· chemicals, 26(2), 77–94. (2021)
· Peters, M. C., Minton, A., Phanstiel Iv, O. & Gilmour, S. K. A. Novel
· polyamine- targeted therapy for BRAF mutant melanoma tumors. Med. Sci. 6,
· https://doi.org/10.3390/medsci6010003 (2018).
· Holbert, C.E., Cullen, M.T., Casero, R.A. et al. Polyamines in cancer: integrating
· organismal metabolism and antitumour immunity. Nat Rev Cancer 22, 467–480
· (2022).
· G. Jiang, W. Zhu, Q. Chen, X. Li, G. Zhang, Y. Li, X. Fan, J. Wang Selective
· fluorescent probes for spermine and 1-adamantanamine based on the
· supramolecular structure formed between AIE-active molecule and cucurbit[n]urils
· Sensor. Actuator. B Chem., 261 (2018), pp. 602-607
· T, I. Kim., Y. Kim., Analyte-directed formation of emissive excimers for the
· selective detection of polyamines, Chem. Commun.,52, 10648-10651 (2016)
· P. Singh, L. S. Mittal, G. Bhargava, S. Kumar, Ionic Self-Assembled Platform
· of Perylenediimide–Sodium Dodecylsulfate for Detection of Spermine in Clinical
· Samples, Chem. Asian J. 12, 890. (2017)
· Ikeda, M.; Yoshii, T., Matsui, T.; Tanida, T., Komatsu, H., Hamachi, I.,
· Montmorillonite-Supramolecular Hydrogel Hybrid for Fluorocolorimetric Sensing
· of Polyamines. J. Am. Chem. Soc. 133, 1670−1673. (2011)
· Satrijo, A.; Swager, T. M. Anthryl-Doped Conjugated Polyelectrolytes as
· Aggregation-Based Sensors for Nonquenching Multicationic Analytes. J. Am.
· Chem. Soc. 129, 16020−16028. (2007)
· Zhong, H.; Liu, C.; Ge, W.; Sun, R.; Huang, F.; Wang, X. Self-Assembled
· Conjugated Polymer/Chitosan-graft-Oleic Acid Micelles for Fast Visible Detection of Aliphatic Biogenic Amines by ″Turn-On″ FRET. ACS Appl. Mater.
· Interfaces 9, 22875−22884. (2017)
· Malik, A. H.; Hussain, S.; Iyer, P. K. Aggregation-Induced FRET via
· Polymer-Surfactant Complexation: A New Strategy for the Detection of Spermine.
· Anal. Chem. 88, 7358−7364. (2016)
· Tu, J.; Sun, S.; Xu, Y. A Novel Self-Assembled Platform For the Ratiometric
· Fluorescence Detection of Spermine. Chem. Commun. 52, 1040−1043. (2016)
· Tsoi, T. H., Gu, Y. J., Lo, W. S., Wong, W. T., Wong, W. T., Ng, C. F.,
· Lee, C. S., Wong, K. L. Study of the aggregation of DNA capped gold
· nanoparticles: a smart and flexible aptasensor for spermine sensing.
· ChemPlusChem. 82, 802−809. (2017)