• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

범주기반 속성추론: 인과관계 강도의 검

방대한 850만건의 자료 중 주제별로 만들수 있는 최적의 산출물을 해피 캠퍼스에서 체험 하세요 전문가의 지식과 인사이트를 활용하여 쉽고 폭넓게 이해하고 적용할수 있는 기회를 놓치지 마세요
10 페이지
어도비 PDF
최초등록일 2023.08.14 최종저작일 2023.03
10P 미리보기
범주기반 속성추론: 인과관계 강도의 검
  • * 본 문서는 배포용으로 복사 및 편집이 불가합니다.

    미리보기

    서지정보

    · 발행기관 : 한국감성과학회
    · 수록지 정보 : 감성과학 / 26권 / 1호
    · 저자명 : 조준형, 이형철, 김신우

    목차

    Abstrac
    Abstract
    요 약
    1. 서론
    2. 실험 1: 공통원인 네트워크
    2.1. 방법
    2.2. 결과 및 논의
    3. 실험 2: 공통효과 네트워크
    3.1. 방법
    3.2. 결과 및 논의
    4. 종합논의
    REFERENCES

    초록

    본 연구는 범주속성들이 공통원인 혹은 공통효과 인과 네트워크로 연결되었을 때 인과강도에 따른 속성추론을 검증했다. 인과범주에서 속성추론을 검증한 기존 연구들은 인과관계의 방향, 연결된 속성의 개수, 원인 혹은 결과의 여부 등에 따라 고유한 추론 패턴이 나타남을 보여주었다. 다만 기존 연구들은 인과관계에 따른 추론패턴을 주로 탐색했으며 인과관계의 효과가 인과강도에 따라 어떤 변화를 보이는지 확인한 연구는 찾아보기 어렵다. 본 연구에서 는 공통원인(실험 1), 공통효과(실험 2) 네트워크에서 인과강도에 따른 속성추론을 검증했다. 이를 위해 참가자들에 게 속성들이 인과적 관련성을 가지는 범주를 학습하게 한 다음 속성추론 과제를 실시하도록 했다. 실험 결과 인과관 계 뿐만 아니라 인과강도 역시 속성추론에 중요한 영향을 미쳤다. 인과강도가 강할 떄 공통원인 속성에 대해서는 추론이 약해진 반면 공통효과 속성에 대해서는 추론이 강해졌다. 또한 인과강도가 강할 때 공통원인이 존재하는 경 우 결과속성들에 대한 추론이 강해진 반면 공통효과에서는 반대의 결과가 나타났다. 특히 공통효과에서는 인과강도 가 강할 때 인과적 절감이 더 뚜렷하게 나타났다. 이 결과들은 인과적 범주에서의 속성추론에서 참가자들은 인과관 계 뿐만 아니라 인과강도를 고려한다는 것을 일관성있게 보여준다.

    영어초록

    This research investigated category-based feature inference when category features were connected in common cause and common effect causal networks. Previous studies that tested feature inference in causal categories showed unique inference patterns depending on causal direction, number of related features, whether the to-be-inferred feature was cause or effect, etc. However, these prior studies primarily focused on inference pattens that arise from causal relations, and few studies directly explored how the effects of causal relations vary depending on causal strength. We tested feature inference in common cause (Expt. 1) and common effect (Expt. 2) causal categories when casual strengths were either strong or weak. To this end, we had participants learn causal categories where features were causally linked and then perform feature inference task. The results showed that causal strengths as well as causal relations had important impacts on feature inference. When causal strength was strong, inference for common cause feature became weaker but that for the common effect feature became stronger. Moreover, when causal strength was strong and common cause was present, inference for the effect features became stronger, whereas the results were reversed in common effect networks. In particular, in common effect networks, casual discounting was more evident with strong causal strength. These results consistently demonstrate that participants consider not only causal relations but also causal strength in feature inference of causal categories.

    참고자료

    · 없음
  • 자료후기

      Ai 리뷰
      지식판매자의 자료는 깊이 있는 분석과 명확한 설명이 잘 어우러져 있어 학습에 많은 도움이 되었습니다. 과제 작성 시 유용하게 활용할 수 있었습니다.
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 본 학술논문은 (주)코리아스칼라와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
        본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

    “감성과학”의 다른 논문도 확인해 보세요!

    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    • 전문가요청 배너
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 12월 01일 월요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    3:09 오전