• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

다중 자료 변환을 이용한 구성 자료의 지구통계학적 시뮬레이션

방대한 850만건의 자료 중 주제별로 만들수 있는 최적의 산출물을 해피 캠퍼스에서 체험 하세요 전문가의 지식과 인사이트를 활용하여 쉽고 폭넓게 이해하고 적용할수 있는 기회를 놓치지 마세요
19 페이지
어도비 PDF
최초등록일 2016.04.02 최종저작일 2014.02
19P 미리보기
다중 자료 변환을 이용한 구성 자료의 지구통계학적 시뮬레이션
  • * 본 문서는 배포용으로 복사 및 편집이 불가합니다.

    미리보기

    서지정보

    · 발행기관 : 한국지구과학회
    · 수록지 정보 : 한국지구과학회지 / 35권 / 1호
    · 저자명 : 박노욱

    초록

    이 논문에서는 구성 자료의 지구통계학적 시뮬레이션을 위해 다중 자료 변환 기반 조건부 시뮬레이션 틀을 제안하였다. 우선 일반적인 통계 기법의 적용이 가능하도록 구성 자료에 로그비 변환을 적용하였다. 다음 변환들로는 최소/최대 자기상관 인자 변환과 지시자 변환을 순차적으로 적용하였다. 독립적인 새로운 변수의 생성을 위해 최소/최대 자기상관 인자 변환을 적용하였으며, 적용 결과 개별 변수들의 독립적인 시뮬레이션이 가능해진다. 그리고 다중 가우시안 확률 모델을 따르지 않는 변수들의 비모수적 조건부 누적 확률 분포 모델링을 위해 지시자 변환을 적용하였다. 최종적으로는 적용한 변환 방법들의 역순으로 역 변환을 적용하였다. 간석지 표층 퇴적물 성분 자료를 대상으로 제안 시뮬레이션 기법의 적용 가능성을 예시하였다. 모든 시뮬레이션 결과들은 구성 자료의 제한 조건을 만족하면서 샘플 자료의 통계 특성을 잘 반영하였다. 구성 자료의 다수의 시뮬레이션 결과들을 이용한 표층 퇴적물 분류를 통해 기존 크리깅에서는 얻을 수 없는 분류 결과의 확률론적 평가가 가능하였다. 따라서 제안 시뮬레이션 틀은 다양한 구성 자료의 지구통계학적 시뮬레이션에 효과적으로 이용될 수 있을 것으로 기대된다.

    영어초록

    This paper suggests a conditional simulation framework based on multiple data transformations for geostatistical simulation of compositional data. First, log-ratio transformation is applied to original compositional data in order to apply conventional statistical methodologies. As for the next transformations that follow, minimum/maximum autocorrelation factors (MAF) and indicator transformations are sequentially applied. MAF transformation is applied to generate independent new variables and as a result, an independent simulation of individual variables can be applied. Indicator transformation is also applied to non-parametric conditional cumulative distribution function modeling of variables that do not follow multi-Gaussian random function models. Finally, inverse transformations are applied in the reverse order of those transformations that are applied. A case study with surface sediment compositions in tidal flats is carried out to illustrate the applicability of the presented simulation framework. All simulation results satisfied the constraints of compositional data and reproduced well the statistical characteristics of the sample data. Through surface sediment classification based on multiple simulation results of compositions, the probabilistic evaluation of classification results was possible, an evaluation unavailable in a conventional kriging approach. Therefore, it is expected that the presented simulation framework can be effectively applied to geostatistical simulation of various compositional data.

    참고자료

    · 없음
  • 자료후기

      Ai 리뷰
      지식판매자의 자료는 항상 기대 이상의 정보를 제공합니다. 특히 학업에도 활용할 수 있어 매우 만족스럽습니다. 여러분께도 추천합니다!
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 본 학술논문은 (주)코리아스칼라와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
        본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

    “한국지구과학회지”의 다른 논문도 확인해 보세요!

    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2026년 02월 12일 목요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    7:42 오후