BRONZE
BRONZE 등급의 판매자 자료

중심극한정리 구체적 증명

중심극한정리에 이론적 배경과 함께 실질적 실험 데이터를 통해 얻은 결과로 중심극한정리의 수렴 속도와 실제 수렴 상태를 살펴보는 논문으로써 데이터가 포함되어 분량은 많지만 이해하기 쉬운 논문이다. 학위 학술지 논문으로 평가 받았으며, 찾아볼수 없는 형태의 논문으로 희소성을 갖는다.
79 페이지
한컴오피스
최초등록일 2011.12.13 최종저작일 2011.11
79P 미리보기
중심극한정리 구체적 증명
  • 미리보기

    소개

    중심극한정리에 이론적 배경과 함께 실질적 실험 데이터를 통해 얻은 결과로 중심극한정리의 수렴 속도와 실제 수렴 상태를 살펴보는 논문으로써 데이터가 포함되어 분량은 많지만 이해하기 쉬운 논문이다.
    학위 학술지 논문으로 평가 받았으며, 찾아볼수 없는 형태의 논문으로 희소성을 갖는다.

    목차

    Ⅰ. 서론 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 1

    Ⅱ. 확률분포 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․3
    2. 1. 이항분포 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․3
    2. 2. Poisson분포 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․3
    2. 3. 정규분포 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․4

    Ⅲ. 중심극한정리(Central Limit Theorem) ․․․․․․․․․․․․․․․․․․․․․․․․․6
    3. 1. 중심극한정리의 역사적 배경 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․6
    3. 2. 중심극한정리의 이론과 증명 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․6

    Ⅳ. 실험설계 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․9
    4. 1. 실험 목적 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․9
    4. 2. 실험 방법 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․9

    Ⅴ. Minitab 프로그램 활용한 실험분석 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․10
    5. 1. Minitab 프로그램 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․10
    5. 2. 그래프(Graph)와 이론비교 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․10

    Ⅵ. 결론 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 21

    부록. 실험 Data

    참고문헌

    본문내용

    Ⅰ. 서 론

    동전이나 주사위를 던졌을 때 그 결과를 예측하거나, 오후에 비가 올 것인지 안 올 것인지 혹은 내일 아침에 예상 기온이 몇 도가 될 것인가, 각 도시에서 매일 일어나는 교통사고의 발생현상, 각 지역의 연 평균 강수량의 변화현상 등을 예측하기란 쉽지 않은 것으로 불확실하다고 볼 수 있다. 이렇듯 자연 또는 사회현상 중에서 결과가 사전에 예측될 수 없는 현상, 즉 결과가 어떤 불확실성에 의해서 좌우되는 현상을 ‘확률현상’이라고 한다.
    하나의 사건이 일어날 수 있는 가능성을 수로 나타낸 것으로 같은 원인에서 특정의 결과가 나타나는 비율을 확률이라 하고, 이를 정식화된 모형에 관하여 그 구조를 연구하는 것을 확률론이라 한다. 따라서 확률은 일상적인 상황과 연결되어 오늘날 대중문화 가운데 확고하게 자리 잡고 있으며, 보험 사업이나 품질 관리 또는 경험 과학 등에서 광범위하게 이용되는 통계적 방법의 바탕을 이루고 있어 현대 사회에서 매우 중요한 역할을 하고 있다. 이러한 사실 때문에 전 세계적으로 수학에서 확률의 중요성이 강조되어 왔다.
    한편, 서울 인구의 생계비, 한국 쌀 생산량의 추이, 추출 검사한 제품들 중에 불량품의 개수 등 사회집단 또는 자연집단의 상황을 숫자로 나타낸 것을 통계라 한다. 이러한 통계 조사의 목적은 모집단에 대한 정보를 알아내는 것이지만 모집단 전체를 조사한다는 것은 현실적으로 불가능하다. 그래서 모집단으로부터 표본을 뽑고 계산되는 통계량을 이용하여 모수를 추정하게 된다. 그러나 통계량의 값은 어떠한 표본을 선택했는가에 따라 달라지기 때문에 어느 정도의 불확실성이 수반되는데, 확률론은 이 불확실성의 정도나 특징을 어느 정도 객관적인 방법으로 설명할 수 있다. 그러므로 통계적 추론은 제한된 관찰을 통하여 전체를 추리하는 데 발생될 수 있는 오류나 불확실성의 정도를 확률의 개념으로 규정하여 이것들을 확률법칙으로 설명할 수 있다.
    본 논문의 목적은 실험을 통해 얻어진 자료를 기초로 하여 확률론과 통계학 분야에서 가장 중요시되는 정리들 가운데 하나인 중심극한정리에 대한 이론을 증명해보고자 한다.
    중심극한정리는 비록 모집단이 정규분포를 따르지 않더라도 여기서 얻어지는 확률표본의 합이나 평균들은 그 표본의 크기를 어느 정도 크게 하면 근사적으로 정규분포를 따른다는 성질을 말한다. 이러한 극한성질을 이용하면 모집단이 아무리 크다고 하더라도 통계이론을 통하여 자연현상이나 사회현상에서 나타나는 여러 분포들의 근사형태를 설명할 수 있다.

    참고자료

    · (가) 이종성, 「공업통계학」 서울 : 교우사, 2011
    · (나) 연세대학교, 「중심극한정리의 연구」 2005
  • 자료후기

      Ai 리뷰
      지식판매자가 등록한 자료는 주제에 대한 깊이 있는 분석이 돋보입니다. 과제를 작성하는 데 큰 도움이 되었습니다. 앞으로도 이런 좋은 자료가 많이 등록되기를 기대합니다.
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
        자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
        저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
    문서 초안을 생성해주는 EasyAI
    안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 07월 19일 토요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    4:24 오후