
총 1,581개
-
확률변수와 확률분포의 개념 설명2025.05.141. 확률변수 확률은 특정한 사건이 발생할 가능성을 0과 1로 표현한 값이다. 확률은 객관적 확률과 주관적 확률로 구분되며, 고전적 확률 관점에서는 경험적 자료가 없어도 논리적 추론과 계산으로 선험적 확률을 구할 수 있다. 주관적 확률은 간접적 자료와 수집 자료를 활용하여 표본을 정리하고 사건 발생 확률을 정의한 다음 공준을 구하는 방식을 채택한다. 2. 확률분포 확률분포는 단일변량 확률분포, 결합확률분포, 주변확률분포, 조건부확률분포로 구분할 수 있다. 이러한 확률분포는 확률 덧셈법칙, 여확률법칙, 곱셈법칙, 통계적 독립성 등의 ...2025.05.14
-
확률변수와 겹합확률분포, 확률분포에 대한 학습2025.01.201. 이산확률분포 이산 확률 분포는 확률 변수가 유한개의 값 또는 셀 수 있는 무한개의 값만을 취하는 분포로서 정의됩니다. 이산확률분포에는 베르누이분포, 이항분포, 기하분포, 음이항분포, 포아송분포, 초기하분포, 다항분포 등 총 7가지 종류가 있습니다. 2. 연속확률분포 연속확률변수는 확률변수의 값이 연속적인 값을 취하는 확률분포입니다. 연속확률분포의 예로는 정규분포, 표준정규분포, 스튜던트 t분포, f분포, 카이제곱분포 등이 있습니다. 연속확률분포는 확률밀도함수로 표현되며, 이산확률분포와 달리 P(X=x)의 형태로 확률을 표현할 ...2025.01.20
-
이산확률분포와 연속확률분포의 차이점2025.01.281. 이산확률분포 이산확률분포는 확률변수가 이산적인 값만을 가지는 확률분포를 말한다. 즉, 확률변수가 특정한 값만을 가지며 그 외의 값은 가질 수 없는 분포이다. 예를 들어 동전 던지기, 주사위 던지기 등이 이산확률분포의 대표적인 사례이다. 2. 연속확률분포 연속확률분포는 확률변수가 연속적인 값을 가지는 확률분포를 말한다. 즉, 확률변수가 어떤 구간 내의 모든 값을 가질 수 있는 분포이다. 예를 들어 사람의 키, 몸무게, 수명 등이 연속확률분포의 대표적인 사례이다. 3. 이산확률분포와 연속확률분포의 차이점 이산확률분포와 연속확률분포...2025.01.28
-
확률변수와 겹합확률분포, 확률분포에 대한 학습2025.01.211. 확률분포 확률분포(Probability distribution)는 확률에 대한 분포 함수로 이해할 수 있는데, 즉 어떤 사건(Event)이 일어날 확률(Probability)이 있을 경우 확률 변수가 특정한 값을 가질 확률을 나타낸 것이다. 따라서 이 확률변수의 종류에 따라 확률분포를 이산확률분포와 연속확률분포로 구분할 수 있다. 2. 이산확률분포 확률변수를 셀 수 있을 경우에는 이산확률분포를 도출하게 되고, 확률변수를 셀 수 없으며 무한하게 연속적일 경우에는 연속확률분포를 갖게 된다. 이산확률분포의 종류로는 이항분포, 포아송...2025.01.21
-
확률변수와 확률분포의 개념 및 차이점2025.01.171. 이산확률분포 이산확률분포는 확률변수가 이산적인 값을 가지는 경우를 말한다. 예를 들어 동전 던지기나 주사위 굴리기와 같은 실험에서 확률변수는 이산적인 값을 가지며, 각 값에 대한 확률을 구할 수 있다. 이산확률분포에서는 확률변수가 취하는 각 값에 대한 확률을 P(X=x)의 형태로 표현할 수 있다. 2. 연속확률분포 연속확률분포는 확률변수가 연속적인 값을 가지는 경우를 말한다. 예를 들어 시계의 시침, 분침, 초침의 움직임과 같이 연속적으로 변화하는 값을 가지는 경우가 연속확률분포에 해당한다. 연속확률분포에서는 특정 구간 내에서...2025.01.17
-
이산확률분포와 연속확률분포의 차이점2025.01.021. 이산확률분포 이산확률분포는 이산적인 값을 갖는 확률변수에 따른 분포에 대해 설명하는 확률분포입니다. 이산확률변수는 무한하지 않은 값(유한 값) 혹은 셀 수 있는 값을 가질 수 있으며, 이산확률변수가 가질 수 있는 값 모두의 집단은 카운트가 가능합니다. 이산확률변수가 가지는 값을 가질 확률은 확률질량함수(Probability mass function, PMF)를 이용하여 지정됩니다. 2. 연속확률분포 연속확률분포(Continuous Probability Distribution)는 연속확률 변수(continuous random v...2025.01.02
-
경영통계학(단순확률, 결합확률, 조건부확률의 개념을 이용한 문제풀이)2025.05.071. 단순확률 학생들의 IQ와 대학입시 합격률 간의 관계를 알아보기 위해 3년간 총 200명의 학생을 대상으로 한 연구조사 결과, 합격확률(A)은 52%로 나타났습니다. 임의의 한 학생을 선정했을 때 그 학생이 대학에 합격할 확률은 52%입니다. 2. 결합확률 임의의 한 학생을 선정했을 때 그 학생이 대학에 합격했을 뿐만 아니라 IQ도 125를 넘을 확률은 23%입니다. 또한 임의의 한 학생을 선정했을 때 그 학생이 대학에 합격했지만 IQ는 125를 넘지 않을 확률은 29%입니다. 3. 조건부확률 무작위로 한 학생을 뽑았더니, 그 ...2025.05.07
-
이산 확률 분포와 연속 확률 분포의 차이점2025.01.171. 이산 확률 분포 이산 확률 분포는 이산 확률 변수의 각 가능한 결과에 확률을 할당하는 확률 분포입니다. 이산 랜덤 변수는 동전 던지기에서 나온 앞면 수나 주사위를 굴려 나온 숫자와 같이 셀 수 있는 수의 값을 취할 수 있는 변수입니다. 이산 확률 분포의 예로는 동전 던지기, 주사위 굴리기, 푸아송 분포 등이 있습니다. 2. 연속 확률 분포 연속 확률 분포는 연속 확률 변수의 가능한 각 값 범위에 확률을 할당하는 확률 분포입니다. 연속 무작위 변수는 개인의 키나 몸무게와 같이 값의 범위 내에서 어떤 값을 취할 수 있는 변수입니다...2025.01.17
-
경영통계학 ) 확률의 종류에는 한계확률, 결합확률, 조건부확률로 볼 때 그에 따른 개념과 차이점에 관련하여 논하시오.2025.04.261. 한계확률 한계확률이란 다변량의 결합 분포에 비해 다른 변수가 모든 것을 취할 수 있을 때 특정 변수가 값을 취할 확률을 의미한다. 어떤 사건이 발생할 확률 P(A)는 무조건 확률이라고 볼 수 있다. 한계확률은 다른 사건을 조건으로 하지 않는다. 즉 A와 B라는 표본공간이 존재할 때, A 또는 B의 확률만을 보는 것을 한계확률이라고 하는 것이다. 쉽게 설명하여 한계확률은 다른 조건이 없이 어떤 사건이 발생할 확률을 의미한다. 2. 결합확률 결합확률이란 여러 조건을 포함하고 모든 조건이 동시에 성립하는 확률을 말하며, P(X=A,...2025.04.26
-
경영통계학 이산확률변수와 연속확률변수의 차이 및 확률밀도함수 설명2025.04.281. 이산확률변수 이산확률변수는 모든 가능한 값이 유한하며, 각각의 값 사이의 차이가 통계적 의미를 갖고 있다. 이처럼 서로 인접한 단위 사이에서 존재할 수 있는 값들의 수는 유한이며, 확률은 각각의 특정 값들에 대응하여 할당된다. 이산확률변수는 표본 공간의 단위 사상이 취할 수 있는 모든 실수의 값을 나열할 수 있는 확률변수이다. 2. 연속확률변수 연속확률변수는 모든 가능한 값이 무한이며, 각각의 값 사이의 차이가 큰 통계적 의미는 없는 경우가 많다. 또한 서로 인접한 단위 사이에서 존재할 수 있는 값들의 수는 무한이며, 확률은 ...2025.04.28