총 68개
-
전자 스핀 공명 실험 결과보고서 (A+)2025.04.251. 전자 스핀 공명 이번 실험은 전자 스핀 공명(Electron Spin Resonance - ESR)을 사용하여 전자의 유명한 g 인자를 찾아내는 실험이었다. 자기장에 노출된 자유 전자의 스핀-플립 전이를 관찰함으로써 실험 목적을 달성하고자 했다. 전자 스핀 공명은 전자, 원자핵 등이 지닌 자기 모멘트에 자기장을 가해 에너지를 분리하고, 에너지 차이의 전자기파를 입사시켜 공명 흡수를 발생시키는 현상이다. 이번 실험에서는 DPPH 물질에 시간에 따라 변하지 않는 자기장을 가해 비정상 Zeeman 효과를 관찰하고, 전자 스핀 공명 ...2025.04.25
-
전자 스핀 공명 실험 예비보고서 [현대물리실험 A+]2025.04.251. 전자 스핀 공명 전자 스핀 공명(Electron Spin Resonance - ESR)은 물리학, 화학, 생물학 및 의학에서 결정 구조, 분자, 화학반응 및 기타 문제를 조사할 수 있는 중요한 방법이다. ESR은 전자의 스핀 상태가 분리되는 외부 자기장에서 상자성 물질에 의한 고주파 복사의 흡수를 기반으로 한다. 전자 스핀 공명은 상자성 물질로 제한되는데, 상자성 물질에서는 전자의 궤도 각운동량과 스핀이 총 각운동량이 0과 다르게 결합되기 때문이다. 이번 실험에서는 DPPH 샘플을 사용하여 전자의 유명한 g 인자를 찾아내는 것...2025.04.25
-
자기와 전자2025.05.131. 스핀 자기 쌍극자모멘트 모든 자성 물질은 그 안에 들어있는 전자 때문에 자성을 띤다. 보통 도선을 통하여 전자를 보내면 전류가 흐르고 이때 도선 부근에 자기장이 만들어진다. 이때 흐르는 전자는 스핀 각운동량이라고 부르는 고유한 각운동량을 갖는다. 스핀 각운동량(S)과 스핀 자기 쌍극자모멘트(μs)는 μs = -(e/m)S의 관계를 갖는다. 스핀 S 자체를 정확히 측정할 수는 없지만, 특정 축에 대한 성분 Sz는 Sz = ms(h/2π)의 식으로 나타낼 수 있다. 여기서 ms는 스핀 자기양자수로 ±1/2의 값을 가진다. 전자의 ...2025.05.13
-
물리학콜로퀴움 Spintronics 레포트2025.05.141. Spintronics 현재 사용되는 전자제품은 대부분 '전하'라는 전자의 기본 속성을 이용한 제품이다. 기존의 전하를 사용하는 방식 대신 전자의 또 다른 기본 속성인 '스핀'을 이용하는 방식이 연구 중이며 이러한 전자 이용 방식을 일컫는 용어가 spintronics이다. spintronics란 spin, transport, electronics의 합성어로 앞서 설명한 것처럼 전자의 스핀을 이용하는 방식이다. spintronics는 기존 방식에 비해 몇 가지 장점을 가지고 있다. 먼저 반도체를 알루미늄, 구리와 같은 소재로 대체...2025.05.14
-
양자 지우개 실험 예비보고서 [현대물리실헌 A+]2025.04.251. 전자 스핀 공명(ESR) 이번 실험에서는 전자 스핀 공명(ESR)을 사용하여 전자의 유명한 g 인자를 찾아내는 실험을 수행하였다. 전자 스핀 공명은 전자의 스핀 상태가 외부 자기장에서 분리되는 현상을 이용하여 상자성 물질의 특성을 조사하는 중요한 방법이다. 전자의 스핀 자기 모멘트와 궤도 각운동량이 총 각운동량으로 결합되어 있으며, 이에 따라 자기 모멘트가 양자화된 상태로 존재하게 된다. 이러한 에너지 준위 분리를 전자 스핀 공명을 통해 직접 측정할 수 있다. 2. DPPH 샘플 실험에서 사용된 샘플 물질은 1,1-diphen...2025.04.25
-
zeeman 효과2025.05.081. 제만 효과 제만효과는 외부 자기장의 영향으로 원자 에너지 준위의 갈라짐이 나타나는 현상을 말한다. 이 효과는 1895년 로렌츠의 원자 고전 이론에 의해 예상되었으며 수 년 후 제만에 의해 실험적으로 확인되었다. 제만은 자기장에 수직인 경우 스펙트럼선이 3개로 갈라지고 평행인 경우 스펙트럼선이 2개로 갈라지는 현상을 관찰하였다. 후에 스펙트럼선의 더욱 복잡한 갈라짐 현상을 관찰하였으며 이 현상은 Anomalous Zeeman Effect(이상 제만 효과)로 알려져 있다. 이 현상을 설명하기 위해 호우트스 미트와 윌렌베크가 192...2025.05.08
-
미래 사회를 지탱할 나노 소재 기술2025.01.061. 슈퍼컴퓨터와 계산과학을 활용한 신소재 개발 연구팀은 슈퍼컴퓨터를 활용한 초고속, 대량 계산을 통해 원소의 종류와 조성비만을 입력한 상태에서 2차원의 전자화물이 되는 6개의 물질을 찾아냈다. 이를 바탕으로 연구팀은 자성이 없는 원소들만을 이용해 세계 최초로 자성을 보이는 전자화물을 합성하는 데 성공했다. 이 전자화물은 격자 간 전자가 2차원 공간에서도 완전히 퍼지지 않고 자발적으로 모여있는 새로운 배열 상태를 보였다. 2. 4차 산업혁명을 이끌 차세대 메모리 소재 개발 2017년 KAIST 신소재공학과 박병국 교수와 고려대학교 ...2025.01.06
-
루미놀의 발광 반응2025.01.181. 화학 발광 화학 반응의 결과로 에너지가 방출되는 상황은 다양하며, 연소 반응과 같이 열을 방출할 수도 있지만 빛이 방출되는 반응도 있다. 이러한 화학 발광은 앞서 알아본 인광이나 형광과 달리, 화학 반응을 통해 에너지를 얻어 발광 물질을 전자 들뜬 상태에 도달시킨다. 대표적인 발광 물질인 루미놀의 발광 반응을 통해 화학 발광하는 원리를 살펴보았다. 2. 스핀 다중도 원자 내에 존재하는 전자는 다양한 상태를 지니고 있으며, 이는 양자수라는 개념으로 나타난다. 그 중 하나가 스핀 양자수이다. 두 전자가 자체적인 자전 운동을 하며 ...2025.01.18
-
원자의 구조 그리고 양자역학2025.01.231. 원자의 구조 원자(atom)는 일상적인 물질을 이루는 가장 작은 단위이며, 매우 안정적인 물질이다. 원자는 서로 결합하거나 분해될 수 있으며, 원자 내 전자의 유출입으로 인해 원자 간 결합과 해리가 빈번히 일어나 화합물을 만든다. 2. 이온화 에너지 중성의 원자에서 가장 약하게 속박된 전자를 떼어내는데 필요한 에너지를 이온화 에너지라고 한다. 주기율표의 수직 열(족)에 있는 원소들의 화학적, 물리적 특성이 비슷한 이유는 같은 족 원소들의 이온화 에너지 경향성이 유사하기 때문이다. 3. 광자의 출입 원자는 양자상태로만 존재하며,...2025.01.23
-
원자에 관한 양자역학2025.01.231. 원자의 개요 원자는 매우 안정적이며 수십억 년 동안 변함없이 존재해왔습니다. 원자는 서로 결합하거나 분해되어 안정한 분자를 이루거나 단단한 고체를 형성합니다. 원자 내 존재하는 최외각 전자의 유출입으로 인해 원자 간 결합과 해리가 빈번히 일어납니다. 2. 이온화 에너지 중성의 원자에서 가장 약하게 속박되어 있는 전자를 떼어내는데 필요한 에너지인 이온화 에너지는 주기율표의 족(수직 열)에 있는 원소의 화학적, 물리적 특성이 비슷하게 나타나는데, 이는 이온화 에너지의 경향성이 비슷하기 때문입니다. 3. 광자의 출입 원자는 양자상태...2025.01.23
