총 59개
-
무기화학실험 실험 5 Hydrogen Insertion into WO3 예비2025.05.091. WO3에 H+ 삽입 WO3에 H+를 intercalation 시켜서 HxWO3의 구조로 환원시키고, 이에 따른 전기전도도의 변화를 관찰한다. 또한 장시간 산소 조건에 노출시켜 재산화시킨 후 색이 어떻게 변화하는지 관찰한다. 2. WO3의 결정 구조 WO3는 팔면체 구조를 가지며, 중심에 모든 Calcium 자리가 비어 있기 때문에 perovskite 구조를 가진다. WO3의 구조 중심에 특정 원자가 삽입(intercalation)되면 Tungsten bronze의 구조가 되며 MxWO3로 표현한다. 3. 전기전도도 변화 WO3...2025.05.09
-
고체전해질 결과레포트2025.05.051. 고체전해질(Cu2HgI4) 이번 실험에서는 Cu2HgI4(copper(Ⅰ) tetraiodomercurate(Ⅱ))를 합성하고, 상변화에 따른 색과 전기 전도성의 변화를 관찰했다. Cu2HgI4는 결정격자 결함을 갖고 있는 tetragonal unit cell 구조이며, 67℃에서 붉은색에서 보라색으로 변화한다. 이는 구조 변화에 기인하는데, 낮은 온도에서는 Cu+와 Hg2+층이 분리되어 I-이온층 사이에 싸여있지만 높은 온도에서는 양이온들이 자유롭게 움직이고 사면체 공간에 무작위로 채워져 불규칙한 큐빅 구조로 상변화가 일어난...2025.05.05
-
물리화학 실험 TiO2 광촉매에 의한 분자의 분해2025.05.141. 광촉매 반응 광촉매 반응은 광촉매에 빛을 비추었을 때 일어나는 반응으로, 광촉매가 빛을 흡수하여 활성화에너지를 낮춰줌으로서 반응 속도를 증가시켜주는 반응이다. 광촉매는 자신은 변화하지 않고 반응속도를 변화시키거나 반응을 시작 시키는 등의 역할을 하는 물질이다. TiO2는 광촉매로 널리 사용되며, 빛을 흡수하여 전자와 정공을 생성하고 이를 통해 산화 환원 반응을 촉진시킨다. 2. TiO2 광촉매 TiO2는 광촉매로 널리 사용되는 물질로, 내구성과 내마모성이 우수하고 자신은 변하지 않는다. TiO2는 루타일, 아나타제, 브루카이트...2025.05.14
-
Fluorescein의 형광 예비2025.05.091. 전자 흡수 분광학 전자 흡수 분광학에서 원자 또는 분자들은 자외선-가시광선 영역의 전자기 파를 흡수하여 들뜬 전자상태가 된다. 이때 진동 이완(vibrational relaxation)의 과정을 겪으며 들뜬 전자상태에 도달한다. 들뜬 전자상태의 원자 또는 분자는 바닥 전자상태로 되돌아갈 수 있다. 이때 바닥 전자상태로 되돌아가는 과정에서 들뜬 분자의 에너지는 빛을 방출하며 복사 전이(radiative transition)가 일어난다. 이때 에너지가 방출되면서 들뜬 전자상태에서 에너지 손실이 일어나기 때문에 Stokes' shi...2025.05.09
-
전자공학 ) 1. 광도전 효과, 황화 카드뮴, 광기전 효과, 루미네선스에 대한 설명2025.01.281. 광도전 효과(Photo-Conductivity Effect) 광도전 효과(Photo-Conductivity Effect)는 특정 물질, 특히 반도체에서 빛을 흡수했을 때 전기 전도도가 증가하는 현상이다. 빛을 받으면 물질 내부의 전자들이 에너지를 흡수하여 원래 속박된 상태에서 자유 전자로 전이하게 된다. 이 자유 전자들이 전기장을 통해 이동함으로써 전기 전도성이 증가한다. 이는 빛의 강도에 따라 물질의 전기적 성질이 변하는 것을 의미하며, 주로 광센서나 광전 소자에서 사용된다. 2. 황화 카드뮴(CdS) 황화 카드뮴(CdS)은...2025.01.28
-
유기태양전지(Organic Solar Cell) 고분자 합성 실험 보고서2025.01.221. 유기태양전지 유기태양전지는 친환경적이고 안전할 뿐만 아니라 무한한 에너지원으로 여겨지면서 각광받고 있다. 실리콘 등 무기반도체를 기반으로 하는 무기물 태양전지의 한계를 극복하기 위해 고분자 물질을 사용하는 박막형 태양전지 연구가 활발히 진행되고 있다. 핵심 물질인 공액 고분자(conjugated polymer)는 흡광 계수가 높아 얇은 두께로도 태양빛을 충분히 흡수할 수 있어 얇은 두께로도 제작이 가능하다. 이러한 점들이 태양전지의 생산단가를 낮추며 무게, 크기, 형태에 제약을 적게 해준다. 2. 유기합성 실험 유기 합성실험은...2025.01.22
-
전자기적특성평가_UV 결과보고서2025.01.091. 전자기파 전자기파는 전기장과 자기장이 수직으로 진동하며 진행하는 파동으로, 진공에서 빛의 속도로 전달됩니다. 전자기파는 파장이나 주파수에 따라 라디오파, 마이크로파, 적외선, 가시광선, 자외선, X선, 감마선 등으로 구분됩니다. 전자기파의 속도는 매질의 유전율과 투자율에 따라 달라지며, 진공에서의 속도는 약 3x10^8 m/s입니다. 2. 빛의 에너지 빛은 파동과 입자의 이중성을 가지며, 파장에 따라 에너지가 달라집니다. 에너지는 파장의 역수에 비례하므로, 파장이 짧을수록 에너지가 높습니다. 가시광선 영역은 약 400-700 ...2025.01.09
-
저차원 물질 그래핀, h-BN의 기계적 박리 및 두께 별 라만 스펙트럼 분석 (예비)2025.05.121. 저차원 물질 (그래핀, h-BN) 그래핀은 한 층 내부의 탄소 원자 사이의 covalent bonding으로 벌집구조를 형성하며, Van der Waals bonding으로 층간 결합을 한다. h-BN은 그래핀과 비슷하게 한 층 내부의 Boron 원자와 Nitrogen 원자가 covalent bonding으로 벌집구조를 형성하며, Van der Waals bonding으로 층을 이루는 층상 구조이다. h-BN은 절연체로 band-gap이 5.0~5.6eV로 매우 크다. 2. 기계적 박리 기계적 박리는 층과 층 사이의 Van d...2025.05.12
-
[화공생물공학실험] 광촉매 이용 반응속도 상수 측정 실험 결과레포트2025.01.191. 광촉매 반응 속도 상수 측정 실험을 통해 TiO2 광촉매를 이용한 Methylene blue 분해 반응의 반응 차수와 반응 속도 상수를 계산하였다. 0차, 1차, 2차 반응 가정 하에 실험 결과를 분석한 결과, 1차 반응 가정이 가장 적합한 것으로 나타났다. 반응 속도 상수(k)는 0.0146 min-1이며, 반감기(t1/2)는 47.47분으로 계산되었다. 또한 Beer 법칙을 이용하여 계산한 결과에서도 1차 반응이 가장 잘 맞는 것으로 나타났으며, 반응 속도 상수(k)는 0.0133 min-1, 반감기(t1/2)는 52.11...2025.01.19
-
[A+ 보장] LED와 LD의 특성 비교 및 분석2025.05.111. LED 소자의 특성 LED 소자의 실험 결과를 통해 LED 소자의 스펙트럼 특성을 확인할 수 있었다. LED 소자는 특정 파장 대역에서 빛을 방출하며, 파장에 따른 광도 차이를 보인다. 특히 녹색 LED 소자의 경우 시감도가 높아 스펙트럼 변화가 크게 나타났다. LED 소자의 중요 특성인 피크 발광 파장(hp)과 반치폭(FWHM)을 확인할 수 있었다. 2. LD 소자의 특성 LD 소자의 실험 결과를 통해 LD 소자의 스펙트럼 특성을 확인할 수 있었다. LD 소자는 LED 소자와 달리 공진기를 가지고 있어, 유도 방출을 통해 빛...2025.05.11
