총 429개
-
인천대 현대물리학실험 6. FrackHertz 실험 예비보고서2025.05.131. 양자화 물리학에서 양자화는 연속적으로 보이는 양을 자연수로 셀 수 있는 양으로 해석하는 것이다. 처음으로 언급된 것은 1901년 막스 플랑크는 흑체 복사의 성질을 설명하려면 에너지의 양이 셀 수 있는 기본 단위로 이루어져야 한다는 것에서 출발하였다. 이후 1905년 아인슈타인의 광전효과를 통해 전자기파를 양자화하는 제안이 자리 잡게 되었다. 2. 공명퍼텐셜 공명퍼텐셜이란 정상 궤도에서 가장 가까운 궤도로 전자를 이동시키는 데 필요한 에너지이다. 이때 단위는 볼트(V)를 쓴다. 3. Franck-Hertz 실험 Franck-He...2025.05.13
-
양자역학 시험대비 공부노트2025.11.131. 양자역학 기초 양자역학은 원자 및 아원자 입자의 행동을 설명하는 물리학의 기본 이론입니다. 파동-입자 이중성, 불확정성 원리, 양자화된 에너지 준위 등의 핵심 개념을 포함하며, 슈뢰딩거 방정식을 통해 입자의 파동함수와 확률분포를 기술합니다. 양자역학은 현대 물리학, 화학, 재료과학의 기초를 이루고 있습니다. 2. 슈뢰딩거 방정식 슈뢰딩거 방정식은 양자역학의 핵심 방정식으로, 입자의 파동함수가 시간에 따라 어떻게 변하는지를 기술합니다. 시간에 무관한 슈뢰딩거 방정식은 정상상태의 에너지 고유값과 고유함수를 구하는 데 사용되며, 원...2025.11.13
-
수소 원자 스펙트럼 관찰 실험2025.11.121. 수소 원자 스펙트럼 수소 원자의 전자가 에너지 준위 간 전이할 때 방출하는 빛의 파장을 관찰하는 현상. 발머 계열, 라이만 계열 등 다양한 스펙트럼 선이 나타나며, 각 선의 파장은 리드베리 공식으로 계산 가능. 양자역학의 기본 원리를 실증적으로 보여주는 중요한 실험. 2. 에너지 준위 전이 전자가 낮은 에너지 준위에서 높은 에너지 준위로 여기되었다가 다시 낮은 준위로 돌아올 때 에너지 차이만큼의 빛을 방출. 이 과정에서 방출되는 광자의 에너지는 E=hν 관계식을 따르며, 스펙트럼 선의 파장으로 에너지를 계산할 수 있음. 3. ...2025.11.12
-
상대성 이론의 비판과 한계 탐구2025.05.091. 상대성 이론의 한계 상대성 이론은 양자역학과 조화를 이루지 못하고, 시공간 개념에 의존하며, 중력의 본질에 대한 가정에 대한 비판이 있다. 이러한 한계에도 불구하고 상대성 이론은 현대 물리학의 기초 이론으로 남아있다. 2. 상대성 이론의 적용과 논쟁 상대성 이론은 우주론, 블랙홀 연구 등 다양한 분야에 적용되고 있으며, 우주의 가속 팽창, 시간의 본질 등을 둘러싼 논쟁이 계속되고 있다. 연구자들은 상대성 이론의 함의와 한계를 계속 탐구하며 우주에 대한 포괄적인 이해를 발전시키고자 한다. 3. 상대성 이론의 성과와 과제 상대성 ...2025.05.09
-
스티븐 호킹 시간의 역사A Brief History of Time를 읽고 - 2017년 판 중심으로2025.01.181. 우주의 구조와 역사 이 장에서는 우주의 역사와 구조에 대한 우리의 이해가 어떻게 발전해왔는지 설명한다. 고대 그리스 철학자들의 지구 중심설에서부터 코페르니쿠스의 태양 중심설, 그리고 현대의 우주론에 이르기까지의 변화를 제시한다. 과학적 방법의 발전과 함께 천문학과 물리학의 새로운 발견이 이루어졌으며, 빅뱅 이론과 현대 우주론의 발전을 통해 우주의 기원과 진화에 대한 과학적 이해가 심화되었다. 2. 시간과 공간 이 장에서는 아인슈타인의 특수 상대성 이론과 일반 상대성 이론을 설명하며, 시간과 공간이 어떻게 연결되어 있는지 탐구한...2025.01.18
-
광전 효과 실험을 통한 플랑크 상수 측정2025.11.131. 플랑크의 양자 이론 19세기 플랑크는 방사능 연구에서 진동자가 불연속적인 에너지로 이루어져 있다는 이론을 제시했다. 방사선의 흡수와 방출은 두 에너지 레벨 간의 차이로 발생하며, 이 에너지는 E=hυ 식으로 표현된다. 여기서 h는 플랑크 상수이고 υ는 진동수이다. 이 발견으로 플랑크는 노벨상을 수상했으며, 현대 물리학의 기초가 되었다. 2. 광전 효과와 아인슈타인의 설명 광전자의 방출은 빛이 물질을 때릴 때 물질 내 전자가 방출되는 현상이다. 고전 파동 모델은 빛의 세기가 전자의 최대 운동에너지에 비례한다고 예상했으나, 양자 ...2025.11.13
-
열복사 실험 예비보고서2025.05.131. 열복사 열복사란 물질을 구성하는 원자 집단이 열에 의해 들뜨게 되어 전자기파를 복사하는 현상입니다. 물체의 종류와 온도에 따라 결정되며, 온도가 높을수록 커집니다. 고온인 물체 부근에 저온인 물체가 있으면 저온 물체가 복사선의 일부를 흡수하여 열로 변합니다. 이 열을 복사열 또는 방사열이라 합니다. 복사에 의한 열의 전달방식은 대류나 열전도와 달라서, 주위에 열을 중개하는 물질 없이도 빛과 동일한 속도로 순간적으로 고온체로부터 저온체로 열이 전달됩니다. 2. 빛의 이중성 빛은 파동성과 입자성의 이중성을 동시에 지니게 됩니다. ...2025.05.13
-
고전역학 및 양자역학(흑체복사)2025.04.281. 고전역학 고전역학은 뉴턴의 운동 법칙을 기반으로 하는 역학 이론입니다. 이 이론은 거시적인 물체의 운동을 설명하는 데 사용됩니다. 고전역학에서는 물체의 위치, 속도, 가속도 등의 물리량을 사용하여 물체의 운동을 수학적으로 표현할 수 있습니다. 2. 양자역학 양자역학은 20세기 초반에 발전한 물리학 이론으로, 미시 세계의 입자와 에너지 현상을 설명하는 데 사용됩니다. 양자역학에서는 입자의 파동성, 불확정성 원리, 중첩 상태 등의 개념을 사용하여 물질과 에너지의 행동을 설명합니다. 3. 흑체복사 흑체복사는 완전한 흡수체인 흑체가 ...2025.04.28
-
[일반물리학실험]프랑크-헤르츠 실험2025.04.301. 프랑크-헤르츠 실험 프랑크-헤르츠 실험은 1913년 이후 원자의 공명 퍼텐셜(共鳴potential)을 구하기 위해 실시된 실험입니다. 이 실험을 통해 원자 안의 전자는 원자의 에너지 준위에 해당하는 단지 특정한 에너지 값만 가질 수 있다는 것이 밝혀졌습니다. 실험에서 관 속의 음극 C에서 방출된 전자는 그리드 G의 전압에 의해 가속되며, 전압 V1이 어떤 값이 되면 전자들 중 일부가 G 가까이에서 기체 원자와 비탄성 충돌을 하여 운동 에너지를 잃어버리게 됩니다. 이로 인해 양극 A에 흐르던 전류가 급격히 감소하는 현상이 관찰됩...2025.04.30
-
[일반물리학실험]프랑크-헤르츠 실험2025.04.281. 프랑크-헤르츠 실험 프랑크-헤르츠 실험은 1914년 프랑크(J. Franck)와 헤르츠(G. Hertz)가 수은 기체에 전자를 충돌시켜 수은(Hg)의 에너지 상태가 양자화 되어 있음을 확인한 역사적인 실험을 재현한 것이다. 이 실험을 통해 에너지 준위(energy Level)와 여기에너지(excitation energy), 탄성충돌(elastic collision) 등의 개념을 익히고 원자 에너지 상태가 양자화 되어 있음을 직접적으로 관찰할 수 있다. 또한 Ne기체와 전자의 충돌을 통하여 Ne원자의 에너지 상태가 양자화되어 있...2025.04.28
