
총 305개
-
수소 원자의 스펙트럼 관찰 및 Balmer 계열 분석2025.05.121. 수소 원자의 스펙트럼 이 실험에서는 수소 원자의 스펙트럼을 관찰하고, Balmer 계열의 파장을 측정하여 Rydberg 상수를 계산하는 것이 목적입니다. 수소 원자의 스펙트럼은 가시광선 영역에서 H_alpha, H_beta, H_gamma 등의 선이 관찰되며, 이 선들은 자외선 영역까지 확장되는 Balmer 계열을 따릅니다. 실험에서는 Balmer lamp를 이용하여 수소 원자를 여기시키고, Rowland 격자를 통해 스펙트럼을 관찰하여 각 선의 파장을 측정합니다. 이를 통해 Rydberg 상수를 계산할 수 있습니다. 1. 수...2025.05.12
-
원소의 배열과 X선 스펙트럼2025.01.241. 원소의 배열 각 양자상태의 파동함수는 각 상태에 대응되는 수소 원자가 갖는 양자상태의 파동함수와 같지 않음. 다전자 원자에서 주어진 전자의 퍼텐셜 에너지가 원자핵의 전하와 원자핵으로부터의 전자의 위치 뿐만 아니라 모든 전자의 전하와 위치들도 고려해서 정해지기 때문. 원자 내의 전자들에 양자상태를 부여할 때 Pauli 배타원리, 훈트의 규칙, 쌓음의 원리가 적용됨. 양자수 (n)이 같으면 하나의 껍질을 이룸. 2. X선 스펙트럼 고에너지 전자가 구리나 텅스텐과 같은 고체 표적물과 충돌하면서 에너지를 잃어 연속적인 X선 스펙트럼을...2025.01.24
-
블랙홀과 화이트홀의 신비2025.05.091. 블랙홀의 특성 블랙홀의 특성에는 특이점, 사건의 지평선, 시공간 곡률이 있다. 특이점은 물리법칙이 무한대로 발산하는 지점으로, 공간과 시간이 더 이상 존재하지 않는 것처럼 보인다. 사건의 지평선은 내부에서 일어난 사건이 외부에 영향을 미치지 않는 경계면으로, 블랙홀 내부의 정보를 관측할 수 없게 만든다. 시공간 곡률은 블랙홀 주변에서 가파르게 증가하며, 시간의 흐름과 광선의 경로에 영향을 준다. 2. 화이트홀의 특성 화이트홀은 블랙홀과 반대되는 이론적 구조로, 물질과 에너지를 바깥쪽으로 엄청난 속도로 방출한다. 화이트홀의 특성...2025.05.09
-
핵물리학2025.01.291. 원자핵의 발견 20세기 초에는 원자에 전자가 있다는 사실 외에 원자의 구조에 대해 알고 있는 사람은 거의 없었다. 1897년 J. J. Thomson이 전자를 발견할 당시에는 전자의 질량이 얼마인지도 몰랐으며 어떤 원자에 음으로 대전된 전자가 몇 개나 포함되어 있는지조차 말할 수 없었다. 원자는 전기적으로 중성이므로 원자에 양전하가 있으리라고 추측했지만, 양전하가 어떤 형태인지는 아무도 몰랐다. 한 가지 널리 알려져 있던 모형은 양전하와 음전하가 구 안에 고루 섞여 있는 형태였다. 이후 약간의 시간이 흘러 1911년 Ernes...2025.01.29
-
나노 반도체입자의 분광학적 성질2025.01.121. Band theory 물질을 이루는 원자 내부의 전자는 가질 수 있을 수 있는 상태의 에너지가 정해져 있는데 양자역학에 따르면 이 에너지는 불연속적인 값을 갖게 된다. 전자가 있을 수 있는 에너지 위치를 에너지 띠라고 하고 전자가 있을 수 없는 위치를 띠 틈이라고 한다. 에너지 띠 중에서 전자가 채워져 있는 에너지 띠를 Valence band(원자가띠)라고 하고 전자가 존재하지 않는 에너지 띠를 Conduction band(전도띠)라고 한다. 띠 틈의 크기에 따라 물질의 종류를 나눌 수 있다. 2. 양자 사이즈 효과 (양자 갇...2025.01.12
-
영화 컨택트로 보는 라그랑주 역학2025.01.181. 뉴턴 역학과 라그랑주 역학의 차이 뉴턴 역학은 원인과 결과의 관계를 강조하는 선형적 진행을 나타내는 반면, 라그랑주 역학은 목적에 더 치중하며 비선형적 진행을 보인다. 이러한 차이는 영화 '컨택트'에서 인간의 언어와 외계인의 언어를 구분하는 데 적용된다. 2. 라그랑주 역학과 양자역학 라그랑주 역학은 양자역학을 해석하는 데 도움이 된다. 양자역학에서는 입자의 위치와 운동을 벡터로 나타낼 수 없기 때문에, 에너지와 같은 스칼라량을 다루는 라그랑주 역학이 적합하다. 3. 라그랑주 역학과 일반 상대성 이론 라그랑주 역학의 개념은 운...2025.01.18
-
레이저 빛의 특성에 대해서2025.01.241. 레이저의 개요 레이저(laser)라는 용어는 복사의 유도방출에 의한 빛의 증폭(Light Amplification by the Stimulated Emission of Radiation)의 약자이다. 레이저라는 용어는 1917년 Einstein이 이상적인 흑체 복사에 대한 Planck 공식을 설명하는 논문에서 처음으로 등장하였다. 이렇게 레이저에 관한 내용이 20세기 초에 등장했음에도 불구하고 본격적으로 이용되기 시작한 것은 1960년대이다. 레이저는 양자물리학적인 원리가 실용적으로 적용된 대표적인 예라고 할 수 있다. 레이저...2025.01.24
-
양자 지우개 실험 예비보고서 [현대물리실헌 A+]2025.04.251. 전자 스핀 공명(ESR) 이번 실험에서는 전자 스핀 공명(ESR)을 사용하여 전자의 유명한 g 인자를 찾아내는 실험을 수행하였다. 전자 스핀 공명은 전자의 스핀 상태가 외부 자기장에서 분리되는 현상을 이용하여 상자성 물질의 특성을 조사하는 중요한 방법이다. 전자의 스핀 자기 모멘트와 궤도 각운동량이 총 각운동량으로 결합되어 있으며, 이에 따라 자기 모멘트가 양자화된 상태로 존재하게 된다. 이러한 에너지 준위 분리를 전자 스핀 공명을 통해 직접 측정할 수 있다. 2. DPPH 샘플 실험에서 사용된 샘플 물질은 1,1-diphen...2025.04.25
-
충북대 A+ 영의 간섭 일반물리학및실험, 맛보기물리학및실험2025.01.171. 영의 간섭 실험 이중 슬릿을 이용하여 빛의 회절과 간섭 현상을 관찰하고, 간섭 무늬를 이용하여 빛의 파장을 구하는 실험. 이중 슬릿 실험은 양자역학에서 실험 대상의 파동성과 입자성을 구분하는 실험이다. 파동은 회절과 간섭의 성질을 가지고 있어 이중 슬릿을 통과하면 간섭무늬가 나타나지만, 입자는 이러한 특성이 없어 간섭무늬가 나타나지 않는다. 이를 통해 빛이 파동인지 입자인지를 구분할 수 있다. 2. 이중 슬릿 실험 이론 이중 슬릿에서의 보강 간섭은 d sinθ = mλ 의 관계식을 따른다. 여기서 d는 슬릿 사이의 거리, θ는...2025.01.17
-
아인슈타인의 생애와 업적2025.04.251. 아인슈타인의 생애 아인슈타인은 독일 울름시에서 태어났으며, 유대인 가정에서 자랐습니다. 어린 시절 학업 성적이 좋지 않았지만, 수학에 재능이 있었습니다. 가족이 스위스로 망명하면서 스위스 국적을 얻었고, 취리히 연합공과대학을 졸업했습니다. 특허청 관리로 일하면서 상대성 이론 관련 논문을 발표하여 노벨 물리학상을 받았습니다. 나치 정권 하에서 유대인 출신이었기 때문에 미국으로 망명했고, 원자폭탄 개발에 간접적으로 관여했지만 이후 평화주의자로 활동했습니다. 2. 시간이라는 차원 아인슈타인은 기존의 절대적인 시간 개념을 거부하고, ...2025.04.25