총 81개
-
오일러 항등식의 전기 분야 활용2025.01.021. 오일러 공식의 개념 오일러 방정식은 스위스의 수학자 Leonhard Euler가 발표한 공식으로, e^{ix} = cos(x) + i sin(x)의 관계를 설명한다. 이는 지수 함수 e^x와 삼각 함수 sin, cos 간의 관계를 보여준다. 2. 오일러 항등식의 유도 오일러 항등식은 오일러 공식에 x = π를 대입하여 얻은 식으로, e^{iπ} + 1 = 0의 형태로 나타낼 수 있다. 3. Phasor를 통한 선형 회로 분석 오일러 공식은 Phasor 분석의 핵심이 된다. Phasor는 정현파 신호의 크기와 위상 정보를 포함하...2025.01.02
-
신호및시스템 10-14주차 학습 정리2025.11.141. 신호 처리 신호및시스템 과정에서 다루는 신호 처리의 기본 개념과 원리를 학습합니다. 신호의 분류, 기본 신호의 특성, 신호의 변환 및 조작 등 신호 처리의 핵심 내용을 포함하며, 실제 응용 분야에서의 신호 처리 기법을 이해하는 데 중점을 둡니다. 2. 시스템 분석 선형 시스템의 특성과 동작 원리를 분석하는 내용입니다. 시스템의 입출력 관계, 인과성, 안정성 등의 기본 성질을 학습하고, 시간 영역과 주파수 영역에서의 시스템 표현 및 분석 방법을 다룹니다. 3. 푸리에 변환 신호를 주파수 영역으로 변환하는 푸리에 변환의 이론과 응...2025.11.14
-
공업수학 ) 공업수학의 차원(次元, dimension) 도구 중 한 가지 선택 후 주제 대상의 효과적 활용에 대해 장점이나 근거, 예시 등을 구체적으로 제시하되 자기 고유 의견을 포함시켜 논술2025.01.241. 벡터(vector)의 효과적 활용 벡터는 선형대수학의 기본 단위라고 할 수 있으며 다양한 데이터들을 쉽게 표현할 수 있다는 점이 큰 장점이라고 할 수 있다. 데이터를 다양한 피처로 표현할 수 있으며, 피처를 목록화시키게 되면 데이터 사이언스에서는 벡터가 곧 피처의 목록이 될 수 있어 데이터 특징을 쉽게 표현할 수 있다는 점이 장점이고 효과적인 활용으로 평가될 수 있다. 또한 데이터들을 표현하는 식을 찾기 위해서 좌표계를 활용해 식을 찾을 수 있는 지도를 만들 수 있다는 점에서 효과적인 활용으로 평가될 수 있다. 최근 머신러닝과...2025.01.24
-
기초 회로 실험 제 25장 테브닌 정리(결과레포트)2025.01.171. 테브닌 정리 이번 장에서는 테브닌 정리라는 이론을 통해 테브닌 등가전압 Vth와 테브닌 등가저항 Rth가 이론적으로 맞는지를 실험을 통해 확인하였고, 테브닌 정리가 성립한다는 것을 확인할 수 있었다. 실제 저항, 전압, 전류 값들을 측정하고 계산한 결과, 측정값과 계산값이 유사한 것을 통해 테브닌 정리가 성립함을 보였다. 또한 복잡한 회로를 테브닌 정리를 통해 간단한 등가회로로 변환할 수 있어 회로 분석에 유용하게 사용될 수 있다는 것을 알 수 있었다. 1. 테브닌 정리 테브닌 정리는 복잡한 수학적 개념을 다루는 주제입니다. ...2025.01.17
-
데구알 과제1 행렬곱 시간복잡도 분석2025.05.131. 행렬곱 시간복잡도 분석 이 프레젠테이션에서는 행렬곱 연산의 시간복잡도를 분석하였습니다. 먼저 for loop를 이용한 프로그래밍 방식에서는 3개의 for문이 사용되어 Θ(n^3)의 시간복잡도가 발생합니다. 그리고 recursive 행렬곱 방식에서는 행렬을 분할하여 재귀적으로 계산하는데, 이 경우 시간복잡도는 Θ(n^3)으로 나타납니다. 이를 통해 행렬곱 연산의 시간복잡도는 O(n^3)임을 알 수 있습니다. 1. 행렬곱 시간복잡도 분석 행렬곱은 선형대수학에서 매우 중요한 연산 중 하나입니다. 행렬곱의 시간복잡도를 분석하는 것은 ...2025.05.13
-
미분방정식과 패러데이 법칙을 통한 미적분의 전자공학 응용2025.11.151. 미분계수와 도함수 미분계수는 함수 f(x)의 극한값으로 정의되며, 특정 x값에서의 순간 변화율과 접선의 기울기를 나타냅니다. 미분가능한 함수는 연속함수이고, 미분계수를 나열한 함수를 도함수라고 합니다. 함수가 연속이어도 도함수는 연속이 아닐 수 있습니다. 2. 정적분과 넓이 계산 부정적분 g(x)는 도함수가 f(x)인 함수입니다. 닫힌구간 [a,b]에서 연속인 함수의 정적분은 g(b)-g(a)로 계산되며, 함수와 x축 사이의 넓이는 ∫|f(x)|dx로 구합니다. 극한을 이용한 리만 합으로도 넓이를 계산할 수 있습니다. 3. 미...2025.11.15
-
고등학교 인공지능수학 평가계획서2025.01.161. 인공지능과 관련된 수학 인공지능의 발전에 기여한 역사적 사례에서 수학이 어떻게 활용되었는지를 이해하고, 인공지능에 수학이 활용되는 다양한 예를 찾을 수 있다. 2. 텍스트 자료의 표현 수와 수학 기호를 이용하여 실생활의 텍스트 자료를 목적에 알맞게 표현할 수 있고, 수와 수학 기호로 표현된 텍스트 자료를 처리하는 수학 원리를 이해하며 자료를 시각화할 수 있다. 3. 이미지 자료의 표현 수와 수학 기호를 이용하여 실생활의 이미지 자료를 목적에 알맞게 표현할 수 있고, 수와 수학 기호로 표현된 이미지 자료를 처리하는 수학 원리를 ...2025.01.16
-
이차함수와 등가속도 운동2025.01.231. 이차함수 이차함수는 물리학에서 등가속도 운동을 설명하는 데 중요한 역할을 합니다. 등가속도 운동에서 가속도, 속도, 변위 등의 관계를 나타내는 공식들이 이차함수의 형태로 표현됩니다. 이를 통해 물체의 운동을 수학적으로 모델링할 수 있습니다. 2. 등가속도 운동 등가속도 운동은 가속도가 일정한 운동을 말합니다. 이 운동에서는 가속도-시간, 속도-시간, 변위-시간 그래프가 모두 이차함수 형태로 나타납니다. 등가속도 운동의 기본 공식들을 통해 물체의 운동 특성을 분석할 수 있습니다. 3. 물리와 수학의 연관성 이 보고서에서는 물리 ...2025.01.23
-
[A 수치해석실험] 연습문제 2장 3장 (각각 두 문제씩 총 4문제)2025.04.261. 오리피스 유량계 오리피스 유량계의 유량계수(C)는 실험식 C=0.6+0.032γ^2.1-0.19γ^8+91.8γ^2.4/Re^0.75를 만족한다. 여기서 γ는 교축비(관의 지름과 오리피스 지름의 비)이고, Re는 레이놀즈 수이다. 유량계수 C=0.6이고, 레이놀즈 수가 Re=10^5일 때 초기구간 0.2<γ<0.9에서 방정식을 만족하는 교축비(γ)를 이분법을 사용하여 유효숫자 4자리까지 정확히 구하였다. 2. 뉴턴법 다음 방정식 4x^3-e^(0.5x^2)-1=0에 대하여 가장 작은 양의 근을 구하기 위해 초기값을 0.3으로 ...2025.04.26
-
한국의 수학사: 고대부터 근대까지의 발전과정2025.11.131. 동양 수학과 한국 수학의 특징 한국 수학은 중국 수학의 영향을 받았으나 무조건적 수용은 아니었다. 산대 사용, 특이한 마방진, 산학계몽 재출시, 천원술의 이용, 그림을 활용한 증명 등이 한국 수학의 독자적 특징이다. 조선 세종 시대는 동양 전통 사상을 기반으로 수학과 과학이 급성장한 시기로, 당시 중국은 오히려 수학 쇠퇴기를 맞고 있었다. 한국 수학은 사대부의 교양수학과 관료 조직의 실용수학이 이원적 구조를 이루었으며, 관학자 중심으로 발전했다. 2. 삼국시대와 통일신라의 수학 발전 삼국시대 고구려, 백제, 신라는 중국 제도를...2025.11.13
