
총 483개
-
대규모 언어 모델의 실제 적용 사례 및 활용 전략2025.01.141. 질문 응답 시스템과 LLMs 질문 응답(QA) 시스템은 자연어 처리의 하위 영역으로, 복잡한 질문에 대한 답변을 제공하는 시스템입니다. LLM을 활용한 QA 시스템은 도메인 지식에 대한 의존도가 낮고 다양한 종류의 질문에 대응할 수 있는 장점이 있어 고객 서비스, 교육, 연구 등 다양한 분야에서 활용되고 있습니다. LLM을 활용한 QA 시스템을 개발하기 위해서는 데이터, 모델, 프롬프트 등을 고려해야 합니다. 앞으로 LLM의 발전과 함께 QA 시스템의 자연어 이해 및 응답 능력, 다양한 분야의 응용, 자동화 및 지능화가 확대될...2025.01.14
-
기계학습(Machine Learning)에 관한 조사 및 정보통신 기술 활용2025.01.251. 기계학습(Machine Learning) 기계학습은 컴퓨터의 행동을 변경하고 적응시켜 정답에 가깝게 만드는 기술이다. 기계학습은 신경과학, 생물학, 통계학, 수학, 물리학 등 다양한 분야의 아이디어를 사용하여 컴퓨터를 학습시킨다. 기계학습은 지도 학습, 비지도 학습, 강화 학습으로 구분되며, 각각 다른 방식으로 학습을 수행한다. 기계학습은 데이터 마이닝, 컴퓨터 비전, 자연어 처리 등 다양한 분야에 활용되고 있다. 2. 백스캐터 통신 백스캐터 통신은 사물인터넷 시대의 전력 공급 문제를 해결할 수 있는 새로운 통신 시스템이다. ...2025.01.25
-
정보통신망4A 기계학습 Machine Learning에 관하여 조사하여 설명하고 기계학습을 위해 활용될 수 있는 정보통신 기술에 관하여 서술하시오2025.01.251. 기계학습 정의 및 필요성 기계 학습은 컴퓨터 시스템이 데이터를 분석하고 패턴을 학습하여 작업을 수행할 수 있는 능력을 갖추는 것을 의미한다. 기계 학습은 데이터 마이닝이나 기타 학습 알고리즘을 사용하여 지식을 추출하고 이를 경험기반으로 삼아 비슷한 상황의 미래 사건의 결과를 예측하는 컴퓨터 프로그램이다. 기계 학습은 대량의 데이터 처리, 복잡한 패턴 인식, 자동화된 결정, 개인화된 경험 제공, 의사 결정 지원, 지능적인 시스템 구축 등의 이유로 매우 중요하다. 2. 기계학습 장점과 문제점 기계 학습의 장점으로는 패턴 인식 및 ...2025.01.25
-
4차 산업혁명시대에 변화하는 직업의 세계에 대하여 필요한 역량과 직업진로 지도전략에 대하여 서술하고 자신의 직업과 진로에 대하여 적용하여 정리하시오2025.05.051. 4차 산업혁명시대의 개요 4차 산업혁명시대는 인공지능, 빅데이터, 사물인터넷, 로봇공학, 자율주행, 3D프린팅 등 첨단 기술이 급속도로 발전하면서 기존 산업과 새로운 기술이 융합되어 새로운 비즈니스 모델과 가치 창출 방식이 등장하고 있는 시대이다. 이를 통해 디지털, 생명, 물리학 등 다양한 분야에서 새로운 혁신과 발전이 이루어지고 있다. 2. 변화하는 직업의 세계에서 필요한 역량 4차 산업혁명 시대에 필요한 역량으로는 문제해결 역량, 협업 역량, 창의성, 기술 역량 등이 있다. 문제해결 역량은 주어진 문제를 분석하고 새로운 ...2025.05.05
-
GPT-3에서 GPT-4로, 차세대 AI 언어 모델의 발전과 도전2025.05.041. GPT-3 GPT-3(Generative Pre-trained Transformer 3)는 2020년 6월 OpenAI에서 출시된 AI 모델로, 번역, 요약, 질의 응답, 콘텐츠 생성 등 다양한 자연어 작업에서 인상적인 성능을 보였습니다. 1,750억 개의 매개변수를 가진 GPT-3는 방대한 텍스트 데이터 코퍼스에 대한 훈련을 통해 인간과 유사한 텍스트를 생성할 수 있는 자동 회귀 언어 모델입니다. 2. GPT-4 GPT-4는 GPT-3 이후에 출시된 OpenAI의 GPT 시리즈 네 번째 버전입니다. 13조 개의 매개변수를 가...2025.05.04
-
경영정보시스템 ) 인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오.2025.05.161. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 한 가지 특정 작업을 수행하는 것을 목표로 하는 인공지능이며, 강한 인공지능은 인간의 지능과 비슷한 기능을 하는 것을 목표로 한다. 약한 인공지능은 미리 정해진 데이터와 알고리즘을 통해 최적의 결과를 만들어내는 것이 목표이지만, 강한 인공지능은 다양한 기능을 수행하고 새로운 문제를 해결하는 방법을 직접 찾는 것을 목표로 한다. 2. 기계학습의 특징 기계학습은 인공지능을 구현하는 방법 중 하나로, 빅데이터를 반복적으로 분석하여 데이터 내부의 규칙성과 패턴을 추출하고 이를 바탕...2025.05.16
-
현대 컴퓨터 과학의 발전과 알고리즘의 역할2025.05.161. 컴퓨터 과학의 발전과 알고리즘의 역할 현대의 컴퓨터 과학 발전은 꾸준한 연구와 발전의 연속이라 할 수 있습니다. 특히, 알고리즘이 이러한 발전의 핵심이 되어왔다는 것이 많은 학자들의 공통된 견해입니다. 본 장에서는 'The Nature of Computation'이라는 논문을 통해 현대 컴퓨터 과학의 기원과 알고리즘의 중요성에 대하여 자세히 알아보겠습니다. 2. 자연어 처리 분야의 딥러닝 동향 최근 연구에서는 자연 언어 처리(NLP) 분야에서 딥러닝의 동향을 관찰할 수 있습니다. 이 주제에 대하여, 최근 논문 'Attentio...2025.05.16
-
[R & E 활동 대회] 다중 연결 리스트(Multi-Linked List)를 이용한 자연어 처리 방법론 연구2025.05.121. 다중 연결 리스트(Multi-Linked List) 다중 연결 리스트(Multi-Linked List)는 단일 연결 리스트와 비슷한 구조이나 동적 할당(Dynamic allocation)과 노드 구조체를 이용하여 각 노드 간 연결이 다중으로 이루어지도록 한 자료 구조입니다. 여러 종류의 단어가 한 특성을 공유하여 다음 문장으로 연결되어야 하는 처리 구조를 이루어야 하므로 본 연구에서 이용한 자료 구조입니다. 2. 자연어 처리 본 연구에서는 신문 기사를 활용한 빅 데이터를 C언어로 구조화하여 단어 간의 상관관계를 파악하여 새로운...2025.05.12
-
학습에서 기억을 향상시키기 위한 다양한 방법과 효과2025.05.071. 청킹 청킹은 단기 메모리의 메모리를 사용하여 정보를 뭉치는 방법이다. 바우어와 동료들은 정보를 계층적으로 구성하고 기억하는 것이 유용하다는 것을 증명했다. 2. 정교한 시연 정교한 시연은 단기 메모리 정보를 장기 메모리로 전송하는 데 매우 효과적인 방법이다. 기억하려는 정보와 알고 있는 정보를 연결해 보다 효과적으로 정보를 저장할 수 있다. 3. 두문자어 두문자어는 단기기억에서 장기기억으로 넘어가려 할 때 정보의 형태를 바꾸지 않고 암송을 계속하면서 반복적인 시연과 반복적인 인출을 통해 정보를 기억 속에 저장하는 방법이다. 4...2025.05.07
-
ChatGPT 설명 및 이용 가이드2025.05.071. ChatGPT ChatGPT는 최근 인공지능 분야에서 주목받는 대화 모델의 일종입니다. 이 모델은 OpenAI에서 개발한 GPT(Generative Pre-trained Transformer) 모델의 일부로, 자연어 처리 기술과 딥러닝 알고리즘을 활용하여 인간과 대화하는 역할을 수행합니다. ChatGPT는 챗봇, 인공지능 비서, 상담원 등 다양한 분야에서 활용됩니다. 2. Transformer ChatGPT(Generative Pre-trained Transformer)은 딥러닝 기술 중 하나인 Transformer 구조를 기...2025.05.07