총 502개
-
파이썬으로 미분방정식 수치해 구하기2025.11.171. scipy.integrate.solve_ivp scipy 라이브러리의 solve_ivp 함수를 이용한 미분방정식의 수치해 계산 방법. 초기값 문제(Initial Value Problem)를 해결하기 위해 주어진 포맷에 미분방정식과 초기조건을 입력하여 계산. 라이브러리를 활용하므로 복잡한 알고리즘 구현 없이 쉽게 접근 가능하며, 결과는 시간에 따른 농도 변화를 배열 형태로 반환. 그래프 시각화를 통해 결과의 경향을 확인하는 것이 중요. 2. Runge-Kutta 4차 방법 수치해석에서 일반적으로 사용되는 Runge-Kutta 4...2025.11.17
-
파이썬을 이용한 공학계산의 미분방정식 적용예2025.11.171. 자유낙하 운동과 2차 미분방정식 특정 높이에서 돌을 떨어뜨리는 상황에서 가속도는 y'' = d²y/dx² = g 형태의 2차 미분방정식으로 표현됩니다. 이를 적분하면 속도 y' = g*x + v0, 거리 y = 1/2*g*x²을 얻습니다. 초기조건 y0=0, v0=0을 적용하면 y = 1/2*g*x²이 되며, 파이썬을 통해 그래프로 표현하면 직관적으로 시간에 따른 낙하거리를 파악할 수 있습니다. 2. 인구증가 모델과 1차 미분방정식 인구증가 속도 y' = k*y 형태의 1차 미분방정식으로 모델링됩니다. 미국 인구 데이터(180...2025.11.17
-
미분방정식과 패러데이 법칙을 통한 미적분의 전자공학 응용2025.11.151. 미분계수와 도함수 미분계수는 함수 f(x)의 극한값으로 정의되며, 특정 x값에서의 순간 변화율과 접선의 기울기를 나타냅니다. 미분가능한 함수는 연속함수이고, 미분계수를 나열한 함수를 도함수라고 합니다. 함수가 연속이어도 도함수는 연속이 아닐 수 있습니다. 2. 정적분과 넓이 계산 부정적분 g(x)는 도함수가 f(x)인 함수입니다. 닫힌구간 [a,b]에서 연속인 함수의 정적분은 g(b)-g(a)로 계산되며, 함수와 x축 사이의 넓이는 ∫|f(x)|dx로 구합니다. 극한을 이용한 리만 합으로도 넓이를 계산할 수 있습니다. 3. 미...2025.11.15
-
실근의 어림수 분석하기: 뉴턴의 방법과 미분학의 활용2025.11.181. 다항함수의 미분법과 도함수 다항함수의 미분을 이해하기 위해서는 평균변화율과 순간변화율의 개념이 필수적이다. 평균변화율은 y의 변화량을 x의 변화량으로 나눈 값이고, 순간변화율은 어느 한 점에서의 접선의 기울기를 의미한다. 도함수는 함수 f(x)의 각 점에서의 미분계수들을 모아 놓은 함수이며, 미분계수는 함수의 어떤 점에서의 순간변화율이자 그 곡선의 접선의 기울기를 나타낸다. 2. 뉴턴의 실근 어림수 방법(Newton's Method) 뉴턴 방법은 수치해석학에서 실숫값 함수의 영점을 근사하는 방법이다. 자연과학과 공학의 다양한 ...2025.11.18
-
공기저항을 고려한 자유낙하 물체의 미분방정식과 일반해2025.11.161. 자유낙하 물체의 미분방정식 수립 질량 m인 물체가 중력가속도 g로 정지상태에서 자유낙하할 때, 물체에 작용하는 힘은 중력 F_g = mg와 속도에 비례하는 공기저항 F_r = -kv입니다. 뉴턴의 제2법칙 F = ma를 적용하면, 물체의 운동방정식은 m(dv/dt) = mg - kv로 표현됩니다. 이를 정리하면 dv/dt = g - (k/m)v 형태의 1계 선형 상미분방정식이 됩니다. 이 방정식은 중력과 공기저항의 균형을 나타내며, 물체의 속도 변화를 시간에 따라 기술합니다. 2. 선형 상미분방정식의 일반해 구하기 dv/dt ...2025.11.16
-
미분법과 적분법을 우리의 생활 속에 적용한 다양한 사례들2025.05.031. 미분법의 발견과 역사 17세기 영국의 수학자 뉴턴(Newton, I., 1642~1727)은 움직이는 물체의 위치와 속도를 연구하면서 미분법을 발견하였으나 이를 발표하지 않았다. 10여 년 후 독일의 수학자 라이프니츠(Leibniz, G. W., 1646∼1716)가 곡선 위의 한 점에서의 접선을 연구하면서 미분법을 발견하여 세상에 발표하였다. 이로 인해 영국과 독일의 수학자들은 오랜 기간 동안 미분법을 누가먼저 발견하였는가에 대하여 논쟁을 하였다. 오늘날에는 뉴턴과 라이프니츠가 각각 독자적으로 미분을 발견했다고 보고, 두 수...2025.05.03
-
입계점의 미분방정식: 고유값, 고유벡터, 일반해2025.11.171. 비고유점(Improper Node) 미분방정식 y1 = -3y1 + y2, y2 = y1 - 3y2에서 고유값 λ1 = 2, λ2 = 2를 가지며, 고유벡터는 v1 = [1, -1], v2 = [3, 1]입니다. 일반해는 y1 = c1e^(2t) + c2te^(2t), y2 = c1e^(2t) - c2te^(2t)로 표현되며, 중복된 고유값으로 인해 지수함수와 선형항이 포함된 형태입니다. 2. 고유점(Proper Node) 미분방정식 y1 = y1, y2 = -y2에서 고유값 λ1 = 1, λ2 = -1을 가지며, 고유벡터는 ...2025.11.17
-
미분방정식을 이용해 생체시계의 비밀 해결2025.05.041. 생체시계 일반적으로 온도가 오르게 되면 다른 생체반응은 빨라지는데, 이와는 대조적으로 생체시계의 반응은 환경이나 온도와는 상관없이 일정한 리듬을 갖고 있다. 생체시계로 인한 신체 리듬이 어떻게 모든 사람에게 공통적으로 나타나는지를 규명하기 위해 전 세계의 과학자들은 생체시계 원리를 밝히려 노력했다. KAIST 수리과학과의 김재경 교수가 미분방정식을 이용한 수학적 모델링을 통해 온도 변화에도 불구하고 생체시계의 속도를 유지하는 원리를 발견했다. 2. 피리어드2 단백질 KAIST 연구진은 이 같은 이유를 피리어드2라는 핵심 단백질...2025.05.04
-
파이썬으로 공학계산 따라하기 IX - 2차미분방정식(라플라스변환, solve_ivp, RK4)2024.12.311. 2차 미분방정식 풀이 2차 이상의 미분방정식을 풀어내고 그래프화 하기 위해서는 계산 과정을 구성하여 일반해 및 수치해를 풀어내는 과정에서 반드시 일정 수준 이상의 수학적 지식을 필요로 합니다. 그러나 대부분의 공학 계산에서는 3차 이상의 미분방정식의 활용이 극히 드물고 2차까지의 미분방정식 정도가 대부분이기 때문에, 복잡한 수학적 지식의 습득에 많은 노력을 할애하기 보다는 간단한 패턴을 숙지하여 반복적으로 활용하는 편이 훨씬 유용합니다. 2. Runge-Kutta (4th order) 방법 Runge-Kutta (4th ord...2024.12.31
-
수학2 주제탐구 보고서 미분 적분 도함수 활용 카페인 추출 실험 후속 심화 탐구 보고서 수학 화학 생명과학2025.01.271. 카페인의 대사 과정 카페인은 주로 커피, 차, 에너지 음료, 초콜릿 등 다양한 식품을 통해 섭취됩니다. 이러한 음료나 음식 속의 카페인은 섭취 후 위장관에서 빠르게 흡수되는데 이 과정은 일반적으로 매우 빠르게 일어납니다. 카페인을 섭취하면 카페인이 혈액으로 들어가 혈중 농도가 증가하게 됩니다. 보통 섭취 후 30분에서 2시간 이내에 혈중 농도가 최고 수준에 도달하게 됩니다. 이 때 카페인의 각성 효과가 가장 두드러지게 됩니다. 카페인의 대사는 주로 간에서 이루어지며 간의 효소가 카페인을 대사하여 여러가지 주요 대사산물 파라잔틴...2025.01.27
