
총 33개
-
경영통계학: 이산확률분포 요약2024.12.311. 이산 확률 분포 이산 확률 분포는 이산 확률 변수와 각각의 확률 변수에 따른 확률의 분포를 의미합니다. 주사위를 던졌을 때 나오는 확률 변수 X와 각 X에 대한 확률 P(X)로 나타낼 수 있습니다. 이러한 확률 변수와 확률을 표로 나타낸 것을 이산 확률 분포표라고 합니다. 2. 이항 분포 성공할 확률이 p인 베르누이 시행을 n번 반복할 때 일어나는 성공의 횟수를 X라고 하면, 이 확률 변수 X의 분포를 이항 분포라고 합니다. 이항 확률 변수 X가 취하는 값의 범위는 0, 1, 2, ..., n이며, 확률 질량 함수는 P(X=x...2024.12.31
-
이산확률분포의 특징 비교2025.01.031. 이산확률분포 이산확률분포는 확률변수가 가질 수 있는 값이 특정 제한된 개수로 구성되는 확률분포입니다. 이산확률분포에는 이항분포, 포아송분포, 초기하분포 등이 있습니다. 이항분포는 성공의 확률이 p인 베르누이 시행을 독립적으로 n회 반복할 때 성공의 횟수를 확률변수로 하는 분포입니다. 초기하분포는 연속적으로 어떤 시행이 일어나지만 서로 독립이 아닌 경우에 나타나는 분포로, 유한한 모집단에서 비복원추출할 때 얻게 되는 분포입니다. 포아송분포는 단위 시간 안에 어떤 사건이 몇 번 발생한 것인지를 표현하는 이산확률분포입니다. 1. 이...2025.01.03
-
이산확률분포의 유형과 특징2025.01.041. 이산확률분포 이산확률분포는 확률변수가 정수 값을 가지는 확률분포를 말합니다. 이항분포, 포아송분포, 초기하분포 등이 대표적인 이산확률분포의 유형입니다. 이들 분포는 각각 독립시행, 단위시간 내 사건 발생 횟수, 비복원추출 등의 특징을 가지고 있습니다. 2. 이항분포 이항분포는 n번의 독립적인 베르누이 시행에서 성공 확률이 p인 경우의 확률분포입니다. 시행 횟수가 늘어나면 이항분포가 정규분포에 근사해집니다. 이항분포는 페널티킥 성공률 등 두 가지 결과만 있는 실험에 적용할 수 있습니다. 3. 포아송분포 포아송분포는 단위 시간 또...2025.01.04
-
모집단과 표본의 관계 설명2025.01.101. 모집단과 표본의 관계 모집단은 특정한 정보를 얻고자 하는 전체 대상 혹은 집합을 의미하며, 표본은 연구자가 측정하거나 관찰한 결과들의 집합입니다. 모집단 전체를 대상으로 전수조사를 하는 것은 비효율적이므로, 연구자들은 표본을 측정하거나 관찰하여 모집단을 추정하게 됩니다. 모집단의 특성으로는 모평균, 모분산, 모표준편차 등이 있고, 표본집단의 특성으로는 표본평균, 표본분산, 표본표준편차 등이 있습니다. 2. 도수분포표와 히스토그램 도수분포표는 자료의 분포를 몇 개의 구간으로 분할하고, 각 구간에 포함되는 자료의 개수를 정리한 표...2025.01.10
-
기초 확률과 통계2025.01.131. 확률 확률의 기본 개념과 용어를 설명하고 있습니다. 시행, 표본공간, 사건 등의 개념을 정의하고 있으며, 확률의 계산 방법과 확률의 기본 정리들을 다루고 있습니다. 또한 조건부 확률, 독립성 등의 개념도 설명하고 있습니다. 2. 통계 통계의 기본 개념과 용어를 설명하고 있습니다. 도수분포표, 히스토그램, 평균, 분산, 표준편차 등의 개념을 정의하고 있습니다. 또한 확률변수, 이산확률분포, 연속확률분포, 정규분포 등의 개념도 다루고 있습니다. 표본과 모집단의 관계, 표본분포 등도 설명하고 있습니다. 3. 이산확률분포 이산확률분포...2025.01.13
-
이산확률분포와 연속확률분포의 차이점2025.01.161. 이산확률분포 이산확률분포는 확률 이론에서 이산 확률 변수가 가지게 되는 확률의 분포를 의미하며, 변수가 가지게 되는 값의 개수가 있다는 특징이 있습니다. 이산확률분포는 확률 변수가 취할 수 있는 모든 가능한 값들과 그 값들이 발생할 확률을 나타내는 함수를 정의합니다. 대표적인 이산확률분포로는 이항분포, 포아송분포, 초기하분포 등이 있습니다. 2. 연속확률분포 연속확률분포는 연속확률변수의 가능한 값에 대한 확률을 나타내는 분포이며, 부드러운 곡선으로 표현됩니다. 연속확률분포를 특정할 때는 확률밀도함수를 사용하며, 확률을 계산하기...2025.01.16
-
이산확률분포에 대한 요약2025.01.051. 확률 변수 확률 변수란 무작위로 실험을 했을 때 어떤 확률로 일어나는 각각의 결과를 수치적 값으로 표현하는 변수를 말한다. 쉽게 말해, 랜덤으로 진행되는 실험(ex. 동전을 랜덤으로 던져 그림 or 숫자가 나오는 실험)에서 일정한 확률(ex. 동전 앞이 나올 확률 1/2)을 가지고 발생하는 결과에 실수 값(ex. 앞=1, 뒤=0)을 부여하는 변수이다. 2. 확률 분포 확률 분포란 확률 변수가 가질 수 있는 모든 값에 대해 그 값이 일어날 가능성을 도수분포표나 그래프로서 표현한 것을 말한다. 확률 분포는 이산확률분포와 연속확률분...2025.01.05
-
(A+자료)경영통계학 이산확률분포와 연속확률분포를 정의한 후, 두 확률분포의 차이점을 사례를 들어 설명하시오2025.01.171. 확률변수와 확률분포 확률변수란 실험 결과를 수치로 표현하는 방법이며 결괏값에 따라 이산확률변수와 연속확률변수로 구분됩니다. 확률분포는 이 확률변수가 특정한 값을 가질 확률을 나타내는 함수로 만든 것입니다. 확률분포는 확률변수가 어떤 종류의 값을 가지는가에 따라서 크게 이산확률분포와 연속확률분포 중 하나에 속하게 됩니다. 2. 이산확률분포의 정의 이산확률분포란 이산확률변수가 가지는 확률분포를 의미합니다. 이산확률분포는 확률변수가 가질 수 있는 값의 개수가 여러 개 있다는 의미이고 산발적인 값을 나타냅니다. 자주 사용되는 이산확률...2025.01.17
-
확률변수와 확률분포의 개념 및 차이점2025.01.171. 이산확률분포 이산확률분포는 확률변수가 이산적인 값을 가지는 경우를 말한다. 예를 들어 동전 던지기나 주사위 굴리기와 같은 실험에서 확률변수는 이산적인 값을 가지며, 각 값에 대한 확률을 구할 수 있다. 이산확률분포에서는 확률변수가 취하는 각 값에 대한 확률을 P(X=x)의 형태로 표현할 수 있다. 2. 연속확률분포 연속확률분포는 확률변수가 연속적인 값을 가지는 경우를 말한다. 예를 들어 시계의 시침, 분침, 초침의 움직임과 같이 연속적으로 변화하는 값을 가지는 경우가 연속확률분포에 해당한다. 연속확률분포에서는 특정 구간 내에서...2025.01.17
-
확률변수와 확률분포에 대한 학습2025.01.221. 이산확률분포 이산확률분포는 확률변수에 대한 확률분포로 확률변수의 값의 확률이 어떻게 분포되었는지를 보여주는 분포입니다. 이산확률변수의 확률함수는 두 가지 조건을 만족해야 합니다. 이산확률분포에는 베르누이분포와 이항분포가 있습니다. 2. 이항분포 이항분포는 성공확률 p인 베르누이시행을 n번 반복했을 때 성공횟수 X의 분포를 나타냅니다. 이항분포는 n과 p에 의해 확률구조가 결정되며, 이 두 값이 이항분포의 모수가 됩니다. 이항분포의 특성 중 하나는 성공 확률이 동일하고 서로 독립인 이항 확률변수 합도 이항분포를 따른다는 것입니다...2025.01.22