
총 38개
-
CRM 관리에서 신규고객 유치전략과 기존고객 유치전략2025.01.171. CRM 기술적 구성요소 CRM을 구성할 때 가장 중요한 정보 기술은 데이터베이스와 데이터 웨어하우스이다. 데이터웨어하우스는 개별 사업정보시스템에 흩어져 있는 고객 관련 데이터를 통합해 고객 중심 데이터를 정리하는 개념으로 분석정보와 보고서 계산이 용이하다. OLAP 기술은 고객, 제품, 구매 행동, 서비스 이력 등 다양한 측면을 분석할 수 있으며, 데이터마이닝은 CRM 관련 프로젝트의 필수적인 부분이다. 2. 신규고객 유치전략 CRM은 이미 내부에서 가지고 있는 데이터베이스를 기준으로 의사결정을 내린다. 그러므로 신규고객을 유...2025.01.17
-
구매종속성이 재고관리에 미치는 영향2025.05.131. 구매종속성 구매종속성은 주요 부품의 판매가 관련 하부 부품의 추가적인 판매를 유발하는 것을 의미합니다. 즉, 하부 부품의 경우 독립적으로 판매될 수도 있고, 주요 부품과 함께 추가적으로 판매될 수도 있기 때문에 주요부품의 재고가 부족할 경우 하부부품의 판매 또한 감소하는 것을 구매 종속성이라고 합니다. 본 연구에서는 이러한 구매종속성을 고려한 재고 모형 설계 및 모의 실험, 그리고 실증 검증을 진행하였습니다. 2. 재고관리 본 연구에서는 구매종속성이 존재할 때 구매 종속성을 고려하지 않은 (Q, r) 모형과 비교하여 구매종속성...2025.05.13
-
고객관계관리(CRM)의 정의, 구성 및 기대효과2025.01.171. 고객관계관리(CRM) 고객관계관리란 고객정보를 종합적으로 수집해 해당 정보를 활용해 개별 고객의 특성이나 요구를 파악한 뒤 개별 고객에 맞춘 마케팅 활동을 수행하는 것을 말한다. CRM은 크게 '프론트오피스 CRM 시스템'과 'E-CRM 시스템'으로 구분할 수 있다. CRM의 주요 기능은 판매, 마케팅, 고객서비스, 업무운영 관리 등이 있다. 2. CRM 시스템 구성 CRM 시스템 구성에 있어 가장 중요한 정보 기술은 데이터베이스와 데이터 웨어하우스이다. 데이터 웨어하우스는 개별 사업정보시스템에 흩어져 있는 고객 관련 데이터를...2025.01.17
-
인공지능 시대에 데이터베이스의 필요성 및 중요성2025.01.041. 인공지능 인공지능은 4차 산업혁명의 핵심 요소로, 그동안 인간의 고유 능력이었던 학습, 추론, 지각, 탐색 등의 능력을 인공적인 컴퓨터 기술로 구현한 것을 의미합니다. 인공지능은 사물인터넷, 클라우드 컴퓨팅, 빅데이터와 함께 4차 산업혁명의 주요 기술 및 연구 분야로 자리잡고 있으며, 일상생활과 경제 활동을 지원하는 중요한 기술로 인식되고 있습니다. 2. 데이터베이스의 활용 데이터베이스는 정형화된 데이터를 저장하고 관리하는 시스템으로, 데이터 마이닝을 통해 정보를 추출하고 가공할 수 있습니다. 또한 비/반정형 텍스트 데이터에서...2025.01.04
-
미래사회와 소프트웨어 과제2025.01.291. 데이터 분석의 역사 데이터는 인류 역사 속에서 오래전부터 분석되어 왔다. 이집트의 토지조사, 바빌로니아의 진흙판 숫자, 중국의 인구조사, 그리스의 조세조사, 민수기의 인구조사, 로마의 생명표 등 다양한 데이터 분석 사례가 있었다. 우리나라에서도 조선시대에 호적 제도를 통해 인구통계를 내었다. 이처럼 통계학은 과거부터 국가 통치를 위해 사용되어 왔다. 2. 데이터의 진화 산업혁명 이후 데이터는 국가 데이터에서 민간 데이터로 진화했다. 데이터 저장 기술의 발전으로 소셜 네트워크 서비스 데이터가 등장했고, 데이터베이스 시대가 열렸다...2025.01.29
-
Big Data Data Mining 데이터 마이닝2025.01.121. Data Mining 데이터 마이닝은 방대한 데이터 속에서 유용한 상관관계를 발견하고 추출하여 의사결정에 이용하는 과정입니다. 정보기술의 발달과 비즈니스 요구에 의해 등장했으며, 과열된 기업경쟁과 다양한 고객 요구에 효과적이고 빠른 기업경쟁력을 제공합니다. 데이터 마이닝 이전에는 한정된 자료와 전공 서적 중심의 연역적 방법을 사용했지만, 데이터 마이닝 시대에는 대용량 자료와 실무 중심의 귀납적 방법을 사용합니다. 2. Data Mining 기법 데이터 마이닝 기법에는 의사결정나무, 신경망 네트워크, K-평균 군집화, OLAP ...2025.01.12
-
경영정보시스템_빅데이터의 개념과 특징에 대해 설명하고, 기업이 빅데이터를 활용하여 얻을 수 있는 효익을 구체적인 사례를 통해 설명하시오.2025.05.161. 빅데이터의 개념과 특징 정보의 양이 너무 많아 인간이 한꺼번에 처리할 수 없지만, 이러한 데이터를 특정 기준을 통해 집적함으로써 통찰력 있는 판단을 할 수 있게 된다. 빅데이터는 대용량의 데이터로 규모가 크며 다양한 데이터 유형이 있고, 실시간으로 대용량의 데이터를 처리하고 분석하는 빠른 속도와 그 분석 결과가 유용한 정보로 활용될 수 있는 가치를 가지는 특징이 있다. 2. 빅데이터의 기업 효익 사례 '데이터마이닝'은 빅데이터로 탐색하고 분석하여 유의미한 패턴이나 관계, 규칙 등으로 변환시킴으로써 유용한 정보를 추출하는 기술이...2025.05.16
-
Kernel PCA & Spectral Clustering2025.01.131. Kernel PCA Kernel PCA는 편향이 큰 실세계의 데이터를 분석하는데 어려움이 있고, outlier data에 매우 민감한 linear PCA의 단점을 보완하기 위해 kernel trick을 수행한다. 하지만 분산이 가장 큰 축으로 데이터들을 정사영 시킬 뿐, clustering algorithm을 적용하지는 않는다. 2. Spectral Clustering Spectral Clustering은 군집화를 더 쉽게 하기 위해서 유사도 행렬 A를 통해 데이터들을 변형된 공간에 넣고, 후에 clustering algori...2025.01.13
-
[경영정보시스템] 4차 산업혁명과 관련된 정보기술인 빅데이터에 대한 개념과 특성, 빅데이터를 활용한 기술을 조사하고, 기업에서 빅데이터를 어떻게 활용하고 있는지를 서술하시오. 또한 빅데이터 기술로 인해 발생할 문제점을 예측하고 이에 개인과 기업이 각각 어떻게 대응할 수 있을지를 서술하세요.2025.01.231. 빅데이터의 개념과 특성 빅데이터는 전통적인 데이터 처리 방식으로는 감당하기 어려운 방대한 양의 데이터 집합을 의미한다. 이러한 데이터는 양(Volume), 속도(Velocity), 다양성(Variety), 정확성(Veracity), 가치(Value)의 5가지 특성을 가지고 있으며, 이를 효율적으로 처리하고 분석하여 유의미한 정보를 도출하는 것이 빅데이터 기술의 핵심이다. 빅데이터는 기업의 의사결정에 필요한 근거를 제공하고, 새로운 비즈니스 기회를 발굴하며, 고객의 행동을 예측하는 등 다양한 활용 가능성을 가지고 있다. 2. 빅...2025.01.23
-
고객관계관리 정의 및 특성, CRM 실행안 분석2025.01.171. 고객관계관리 정의 및 특성 CRM은 고객과의 장기적 관계를 구축하고 고객관리 요소를 정리·통합해 기업 경영 성과를 개선하기 위한 새로운 경영방식이다. CRM은 장기적으로 고객 수익성을 극대화하는 것을 목표로 하며, 다양한 고객 정보를 수집, 저장, 분석하여 적시에 적절한 고객에게 효과적인 채널을 통해 제품이나 서비스를 제공한다. 2. CRM의 구성요소 CRM의 구성요소에는 프로세스와 기술적 관점이 있다. 프로세스 관점에서는 신규고객 유치, 기존고객 관리, 고객 수명주기 관리 등이 포함된다. 기술적 관점에서는 데이터웨어하우스, ...2025.01.17