
총 38개
-
특허와 기술개발 선행기술 조사 보고서 과제(인공지능 데이터마이닝)2025.01.061. 데이터 마이닝 데이터 마이닝은 대량의 데이터로부터 새롭고 의미 있는 정보를 추출하고 이를 의사결정에 활용하는 기술입니다. 최근 데이터의 양과 다양성이 증가함에 따라 데이터 마이닝 기술이 각광받고 있습니다. 연관 규칙 분석, 클러스터링 등 다양한 데이터 마이닝 기술이 존재하며, 소매업체의 상품 진열, 광고 추천 등 다양한 분야에서 활용되고 있습니다. 또한 웹 사용 마이닝을 통해 사용자 행동 패턴을 분석하고 개인화된 서비스를 제공할 수 있습니다. 2. 실시간 데이터 마이닝 최근 스마트 단말기의 보급으로 인해 로그 데이터의 양이 증...2025.01.06
-
데이터마이닝의 정의와 활용 분야2025.01.071. 데이터마이닝 정의 및 필요성 데이터마이닝은 대용량의 데이터에서 유용한 지식을 효과적으로 찾아내는 기술로, 기업의 경쟁력 확보에 중요한 역할을 합니다. 데이터마이닝은 통계학, 인공지능, 데이터베이스 등 다양한 분야를 아우르는 융합 분야이며, 비계획적으로 수집된 대용량 데이터를 다루고 일반화와 예측이 중요한 특징을 가지고 있습니다. 2. 데이터마이닝의 활용 분야 데이터마이닝은 데이터베이스 마케팅, 신용평가, 의료 분야 등에서 다양하게 활용되고 있습니다. 데이터베이스 마케팅에서는 타겟 마케팅, 고객 세분화, 이탈 고객 분석 등에 활...2025.01.07
-
데이터 마이닝, 출석수업 과제물 (2023 1학기, 30점 만점)2025.01.251. 데이터 마이닝 기법 데이터 마이닝은 데이터에서 의미를 추출하는 기법을 의미하며, 모수적 모형 접근 방법과 알고리즘 접근 방법이 모두 활용될 수 있다. 모수적 모형 접근법은 모형을 설정하고 모수를 추정하는 방식이며, 알고리즘 접근법은 정해진 알고리즘으로 계산하여 결과를 분석하는 방식이다. 각각의 장단점이 있으며, SNS 텍스트 데이터 분석에 활용할 수 있다. 2. 로지스틱 회귀모형 적합 와인 품질 데이터에 로지스틱 회귀모형을 적합하였다. alcohol 변수만 사용한 모형, sulphates 변수만 사용한 모형, 그리고 유의미한 ...2025.01.25
-
스포티파이 데이터 마이닝2025.01.131. 음악 선호에 미치는 영향 요인 분석 이 프레젠테이션은 K-POP 시장의 지속적인 성장에 따른 글로벌 전략 수립을 위해 스포티파이 데이터를 활용하여 음악 선호에 영향을 미치는 요인을 분석하고 있습니다. 데이터 수집, 전처리, 상관관계 분석, 회귀 분석 등을 통해 아티스트 인기도, 댄스성, 에너지 등의 요인이 트랙 인기도에 미치는 영향을 확인하고 있습니다. 이를 바탕으로 아티스트 협업, 브랜드 페이지 운영 등의 마케팅 전략을 제안하고 있습니다. 1. 음악 선호에 미치는 영향 요인 분석 음악 선호에는 다양한 요인들이 영향을 미칩니다...2025.01.13
-
인터넷비즈니스모델의 이해 07주차 주중 과제2025.05.061. 디지털 돈 디지털 돈은 블록체인과 같은 분산원장 기술을 기반으로 발행되는 전자화폐를 의미합니다. 이러한 디지털 돈은 물리적인 화폐의 한계를 극복하며, 금융 거래의 효율성을 높여줍니다. 경영학 전공과 관련하여, 해외 온라인 쇼핑몰에서 상품을 구매하는 소비자들을 대상으로 디지털 돈을 활용한 환전 서비스를 제공하는 비즈니스 모델을 제시할 수 있습니다. 이 모델은 소비자가 해외 쇼핑몰에서 상품을 구매할 때 디지털 돈으로 결제를 할 수 있게 하고, 이후에 이를 현지 화폐로 자동 환전해주는 서비스입니다. 이를 통해 소비자들이 취급 수수료...2025.05.06
-
데이터 마이닝의 정의와 활용 사례2025.01.021. 데이터 마이닝의 이해 데이터 마이닝은 대량의 데이터 세트에서 가치 있는 정보와 통찰력을 추출하는 프로세스입니다. 여기에는 통계 분석, 기계 학습, 패턴 인식 등의 기술을 사용하여 데이터 내 숨겨진 패턴, 상관 관계 및 트렌드를 식별하는 것이 포함됩니다. 데이터 마이닝 프로세스에는 데이터 수집, 정리 및 전처리, 탐색, 모델 구축, 평가, 배치 등의 단계가 포함됩니다. 2. 데이터 마이닝의 응용 데이터 마이닝의 주요 애플리케이션 중 하나는 예측 분석입니다. 이를 통해 기업은 고객 수요를 예측하고 재고를 효율적으로 관리할 수 있습...2025.01.02
-
데이터마이닝의 정의와 활용 분야2025.01.181. 데이터마이닝의 정의 데이터마이닝은 대규모 데이터 세트에서 통계적이고 수학적인 기법을 활용하여 유용한 정보와 패턴을 추출하는 과정을 말한다. 이는 데이터베이스, 데이터 웨어하우스 또는 다양한 데이터 소스로부터 데이터를 수집하고 분석함으로써 이루어진다. 데이터마이닝은 기계 학습, 통계 분석, 패턴 인식, 인공지능 등의 다양한 분야의 기법과 원칙을 포괄하는 다중 학문적인 접근 방법을 사용한다. 2. 데이터마이닝 활용 분야: 상업 분야 온라인 소매업체는 고객의 구매 이력, 검색 기록, 선호도 등을 분석하여 개별 고객에게 맞춤형 제안을...2025.01.18
-
데이터마이닝 ) 나무 형태를 이용한 지식 표현 사례2025.01.031. 의사결정나무 의사결정나무는 예측모형에서 가장 많이 사용되며 의사결정 규칙을 도표화하여 대상 집단을 분류하거나 예측하는 분석 방법입니다. 의사결정나무의 장점은 나무구조에 의해 모형이 표현되어 사용자의 이해가 쉽고, 유용한 예측변수나 비선형성을 자동으로 찾아낼 수 있으며, 선형성이나 정규성, 등분산성과 같은 가정을 필요로 하지 않는 비모수적인 방법이라는 것입니다. 하지만 의사결정나무 모형은 연속형 변수를 비연속적인 값으로 취급하여 분리의 경계점에서 예측오류가 큰 가능성이 있고, 선형성과 주 효과를 가지지 못한다는 단점이 있습니다....2025.01.03
-
빅데이터의 기술 요건 네 단계에 대해 설명하세요2025.01.121. 빅데이터 기술 요건 빅데이터의 기술 요건은 빅데이터를 수집, 저장, 처리, 분석하는 데 필요한 기술적인 요구사항을 의미합니다. 빅데이터의 규모와 다양성이 증가함에 따라 이러한 요건은 더욱 중요해지고 있습니다. 빅데이터 기술 요건은 크게 네 가지 단계로 나뉘며, 각 단계별로 필요한 기술이 다양하게 요구됩니다. 2. 데이터 수집 단계 데이터 수집 단계에서는 빅데이터를 생성하고 발생하는 원천 데이터를 수집하는 과정을 의미합니다. 이 과정에서 필요한 기술은 데이터 수집과 전송, 그리고 신속한 처리가 가능한 시스템을 구축하는 것입니다....2025.01.12
-
빅 데이터의 의미와 정보기술2025.04.251. 빅 데이터의 의미 빅 데이터는 데이터의 양(Volume), 데이터 생성 속도(Velocity), 형태의 다양성(Variety)이라는 3가지 특성을 가지고 있다. 이러한 빅 데이터는 개인, 단체, 기업, 국가 등에 중요한 자산이 되며 미래 경쟁력을 좌우하는 중요한 자원으로 활용될 것이다. 2. 빅 데이터 분석 기술 빅 데이터 분석 기술에는 기계학습, 데이터마이닝 등이 있다. 기계학습은 컴퓨터가 스스로 학습하여 새로운 규칙을 형성하는 기술이며, 데이터마이닝은 광대한 데이터베이스에서 가치 있는 정보를 찾아내는 기술이다. 이러한 기술...2025.04.25