총 9개
-
Slot die 공정을 통한 페로브스카이트 태양전지 제작 실험2025.04.301. 페로브스카이트 태양전지 이 보고서는 slot-die coater를 사용하여 정구조 페로브스카이트 태양전지를 제작하고 그 효율을 측정한 내용을 다루고 있습니다. ETL 층 형성 시 slot-die coater와 spin-coating 방식을 비교하였으며, 가장 높은 효율을 보인 전지는 spin-coating으로 제작한 N9-4-1 전지로 14.169043%의 효율을 나타냈습니다. 이러한 결과를 바탕으로 대면적 페로브스카이트 태양전지 제작을 위한 공정 개선 방향을 제시하고 있습니다. 2. 태양전지 효율 측정 이 보고서에서는 페로브...2025.04.30
-
페로브스카이트 태양전지 제작2025.04.301. 태양에너지공학 이 보고서는 ITO 기반 페로브스카이트 태양전지 제작 과정과 효율 측정 결과를 다루고 있습니다. 페로브스카이트 태양전지는 TCE, HTL, 페로브스카이트 층, ETL, 금속 층으로 구성되며, 각 층을 제작하는 과정과 특성을 설명하고 있습니다. 또한 glove box와 air 상태에서 제작한 태양전지의 효율을 비교하고, 효율에 영향을 미치는 요인들을 분석하고 있습니다. 1. 태양에너지공학 태양에너지공학은 태양광 발전 기술을 통해 청정하고 지속 가능한 에너지 솔루션을 제공하는 분야입니다. 이 기술은 화석 연료 의존도...2025.04.30
-
AMOLED 소자 및 공정실험 캡스톤 디자인2025.05.121. PEDOT:PSS PEDOT:PSS는 core 물질에 EDG가 붙어있는 형태로, 이번 공정에서는 HIL층의 물질로 사용된다. HIL층은 hole이 EML층에 쉽게 주입되기 위해 ITO전극과 일함수 차이가 작아야 한다. HIL은 방출광이 재 흡수되지 않도록 적절한 Band-gap을 필요로 한다. 2. NPB NPB는 이번 공정에서 HTL층의 물질로 사용된다. HTL에 주로 쓰이는 물질들에도 core 물질에 EDG가 붙어있다. HTL은 발광층 계면에서 화합물을 형성하지 않는 재료를 사용해야 한다. 또한 원활한 hole transp...2025.05.12
-
ZnO 박막의 제조 결과레포트 A+2025.01.171. 유기태양전지의 구조 유기태양전지의 구조는 전극, active layer, buffer layer로 구성되어 있다. 전극은 cathode와 anode로 이루어져 있으며, 금속 전극은 acceptor 층을 따라 나온 전자들을 수집하여 바깥 도선으로 이동할 수 있도록 해주고, ITO 전극은 투명하지만 전류를 흐를 수 있게 해준다. Active layer는 donor와 acceptor로 이루어져 있으며, donor는 exciton을 생성하고, acceptor는 전자친화도가 높은 재료를 이용하여 계면에서 전자를 쉽게 이동시킬 수 있도록...2025.01.17
-
빅데이터의 기술 요건 네 단계에 대해 설명하세요2025.01.181. 데이터 수집 이 단계는 기업 내부와 외부에서 발생하는 엄청난 양의 데이터를 모으는 과정을 말한다. 이 과정에서는 다양한 데이터 소스로부터 필요한 정보를 수동이나 자동으로 수집하는 기술이 필요하다. 예를 들어, 기업 내부 데이터는 ETL(Extraction, Transformation, Load) 솔루션을 통해 추출, 변환, 적재하는 방식으로 확보할 수 있으며, EII(Enterprise Information Integration)를 활용하여 데이터를 통합하고 분석할 수 있다. 외부 데이터의 경우, 웹 크롤링 엔진을 사용하여 인...2025.01.18
-
식물병 저항성과 해충방제의 경제적 개념, 종합적 해충관리(IPM)2025.01.251. 식물병 저항성 식물은 다양한 병원체와 해충의 공격으로부터 자신을 보호하기 위해 복잡한 방어 기작을 발전시켜왔다. 이러한 방어 기작은 식물병 저항성의 여러 형태로 나타나며, 식물이 병원체와의 지속적인 상호작용 속에서 생존할 수 있게 한다. 정적 저항성과 동적 저항성을 포함한 다양한 저항성 유형이 있으며, 이는 식물체-병원체 상호작용을 이해하는 데 중요하다. 2. 식물체의 방어기작 식물체는 병원체의 공격에 대응하기 위해 정적 저항성과 동적 저항성으로 구분되는 다양한 방어 기작을 발전시켰다. 정적 저항성은 식물이 본래 가지고 있는 ...2025.01.25
-
AMD 실험 결과보고서 Optical property of PEDOT_PSS, PDY2025.05.041. PEDOT:PSS PEDOT:PSS는 conductive polymer재료로서, 높은 일함수(보통 5.1eV)와 좋은 Hole affinity을 가지고 있어 정전기 방지막의 재료로 사용된다. 소형 디스플레이에서 사용하는 Bottom emission OLED의 경우 HIL방향으로 빛이 나오고 PEDOT:PSS는 가시광선 투과율이 높기 때문에 HIL로 사용하기 적합하다. HIL의 경우 ITO와 물리적, 화학적으로 궁합이 맞아야 하는데, PEDOT:PSS와 ITO 모두 친수성이기 때문에 접합력이 좋고, ITO로부터 Hole주입도 원...2025.05.04
-
상부 발광형 OLED(Top-emitting OLED) 특성 분석2025.05.121. 상부 발광형 OLED 소자 구조 상부 발광형 OLED 소자는 투명 금속 물질인 ITO를 애노드로 사용하고, 반사막인 MgAg 합금을 캐소드로 사용한다. 유기물층 구조는 HIL, HTL, EML, ETL 등으로 구성되며, 이때 유기물층의 두께 조절을 통해 마이크로 캐비티 효과를 고려하여 광효율을 향상시킬 수 있다. 2. 마이크로 캐비티 효과 상부 발광형 OLED 소자에서 EML층에서 발생한 빛은 다양한 계면에서 투과와 반사가 일어나게 되며, 이때 복잡한 간섭 현상이 발생한다. 이러한 마이크로 캐비티 효과를 고려하여 유기물층의 두...2025.05.12
-
Transparent OLED 실험 보고서2025.05.121. OLED 소자 구조 OLED 소자는 Cathode(-)와 Anode(+)로 구성된 전극, ETL(전자 이동층)과 HTL(정공 이동층), EIL(전자 주입층)과 HIL(정공 주입층), EBL(전자 이동 제한층)과 HBL(정공 이동 제한층), 그리고 발광층(EML)으로 구성되어 있다. 전자와 정공이 발광층에서 만나 빛을 발생시키는 원리이다. 2. Micro Cavity 효과 OLED 소자 내부의 다양한 계면에서 빛의 투과와 반사가 일어나면서 복잡한 간섭 현상이 발생한다. 이를 활용하여 발광물질의 공진 주파수에 맞는 최적의 공진 두...2025.05.12
