총 97개
-
Essential Cell Biology 세포생물학 Chapter.14 시험대비 정리본2025.01.291. 에너지 생성 미토콘드리아와 엽록체에서 에너지가 생성되는 과정에 대해 설명하고 있습니다. 전자 전달 사슬을 통해 양성자 기울기가 형성되고, 이를 이용하여 ATP 합성효소가 ATP를 생성하는 chemiosmotic coupling 과정이 핵심입니다. 또한 미토콘드리아와 엽록체의 구조적 특징과 차이점도 다루고 있습니다. 2. ATP 합성 ATP 합성 과정에서 전자 전달 사슬을 통해 형성된 양성자 기울기가 ATP 합성효소를 통해 ATP 생성에 이용되는 원리를 설명하고 있습니다. 또한 ATP 합성 과정의 효율성과 열 발생에 대해서도 언...2025.01.29
-
에너지대사의 원리에 대하여 기술하시오.2025.01.171. 에너지 대사의 원리 에너지 대사는 생명의 활동, 성장, 유지 및 번식에 필요한 에너지를 생성하고 구성 요소를 제공하는 다양한 생화학적 과정의 원리에 기반하는 복잡한 네트워크입니다. 기본적으로 에너지 대사는 영양소의 에너지 전환과 복잡한 분자의 합성에서 세포 균형의 유지에 이르기까지 일련의 과정을 조절하는 것을 포함합니다. 2. 산화 및 환원 반응 에너지 대사의 핵심 원리로써 물질 사이에서 전자를 주고 받는 산화 및 환원 반응은 호흡과 광합성 과정에서 동시에 일어나며 에너지원인 ATP를 생성하고 유기체의 에너지 균형을 유지 및 ...2025.01.17
-
전북대 화공 응용생화학 챕터5 과제2025.01.171. 화공 응용생화학 이 자료는 전북대학교 화공 응용생화학 과목의 5장 과제에 대한 내용입니다. 주요 내용으로는 효소 반응 메커니즘, 효소 억제, ATP 합성 과정 등이 포함되어 있습니다. 2. 효소 반응 메커니즘 효소 반응의 중간단계와 최종 생성물 형성 과정에 대해 설명하고 있습니다. 효소와 기질의 결합, 중간체 형성, 최종 생성물 방출 등 효소 반응의 전반적인 메커니즘을 다루고 있습니다. 3. 효소 억제 효소 억제제의 종류와 작용 메커니즘에 대해 설명하고 있습니다. 경쟁적 억제, 비경쟁적 억제 등 다양한 억제 방식과 각각의 특징...2025.01.17
-
식품생화학 전자전달계와 산화적 인산화2025.05.071. 전자전달계 전자전달계는 미토콘드리아 내막에 위치하며, NADH와 FADH2로부터 전자를 받아 최종적으로 산소를 환원하여 물을 생성하는 일련의 반응으로 구성되어 있다. 이 과정에서 양성자가 미토콘드리아 기질에서 막 사이 공간으로 이동하여 pH 기울기를 형성하게 되며, 이 에너지를 이용하여 ATP 합성효소가 ADP와 무기인산으로부터 ATP를 생성한다. 2. 산화적 인산화 산화적 인산화는 전자전달계에서 발생한 양성자 기울기를 이용하여 ATP 합성효소가 ADP와 무기인산으로부터 ATP를 생성하는 과정이다. 이때 ATP 합성효소의 입체...2025.05.07
-
동물과 식물의 글루코오스 대사를 통한 ATP 생산과 에너지 효율 비교2025.01.251. 동물의 글루코오스 대사 동물 세포에서 글루코오스 대사는 주로 세포질에서 시작되며, 해당과정을 거쳐 피루브산으로 분해된다. 피루브산은 미토콘드리아로 이동하여 아세틸-CoA로 변환되고, 크렙스 회로를 통해 NADH와 FADH2를 생성한다. 이 조효소들은 전자 전달계로 이동하여 대량의 ATP를 생산한다. 이론적으로 글루코오스 한 분자는 약 36~38분자의 ATP를 생성할 수 있다. 2. 식물의 글루코오스 대사 식물 세포에서도 글루코오스는 주요 에너지원으로 사용되며, 광합성과 세포호흡을 통해 에너지를 생산한다. 광합성에서 식물은 태양...2025.01.25
-
DNA와 RNA에서 사용되는 염기차이, DNA polymerase의 효소활성, 단백질 합성시 사용되는 ATP (에너지) 계산2025.05.081. DNA와 RNA의 염기 차이 DNA에서는 뉴클레오티드로 Thymine이 사용되고, RNA에서는 Uracil이 사용되는데, Thymine이 Uracil로부터 합성되는 경로와 왜 이렇게 구분되어 사용되는지 합리적인 이유를 설명하였다. Thymine과 Uracil의 구조적 차이, Cytosine의 Deamination 과정, Methylation에 의한 Thymine 합성 경로, Uracil의 Base pairing 가능성 등을 고려하여 DNA와 RNA에서 서로 다른 염기를 사용하는 이유를 분석하였다. 2. DNA 복제 과정의 Re...2025.05.08
-
식품생화학 생체 에너지론 요약2025.05.071. 생체 내 에너지와 열역학 법칙 생체 내에서 다양한 형태의 에너지가 존재하며, 이들은 서로 전환될 수 있다. 에너지의 형태에는 운동에너지, 위치에너지, 자유에너지, 엔탈피, 엔트로피 등이 있다. 생체 내에서는 이화작용과 동화작용을 통해 에너지 변환이 일어나며, 이는 열역학 법칙에 따라 설명될 수 있다. 열역학 제1법칙은 에너지 보존을 의미하며, 제2법칙은 엔트로피 증가를 설명한다. 2. 열역학과 생합성 생화학반응에서 자유에너지 변화에 따라 자발적 반응과 짝지어진 반응으로 구분할 수 있다. 자발적 반응은 자유에너지가 감소하는 반응...2025.05.07
-
엽록체2025.01.161. 엽록체 광합성 엽록체 광합성은 엽록체라고 불리는 식물의 소기관에서 수생된다. 엽록체 내에는 빛을 효율적으로 흡수하기 위하여 chlorophyll a, chlorophyll b, carotenoid 등의 광합성 색소들을 효율적으로 배열하며 광계 1과 광계 2를 구성하고 있다. 광계 2의 반응 중심인 P680에서는 물을 광분해하여 산소를 방출하며 분리된 수소이온과 전자를 순환시켜 궁극적으로 ATP를 생산하며 전자를 광계1로 전달한다. 광계1에서는 높은 환원력을 가지는 NADPH를 생산한다. 광반응을 통해서 얻은 ATP와 NADPH...2025.01.16
-
빛과 광합성 레포트2025.05.031. 광합성 광합성은 녹색식물이 빛에너지를 이용하여 CO2와 물로부터 유기화합물을 생성하는 과정이며 이 과정은 녹색식물에 의해 빛에너지가 화학에너지로 전환되는 것을 의미한다. 광합성은 높은 화학 에너지를 갖는 물질을 생성함과 동시에 산소를 방출함으로써, 생태계 내에서 매우 중요한 위치를 차지한다. 광합성은 명반응과 암반응으로 구분할 수 있으며, 명반응에서는 엽록소가 빛에너지를 흡수하여 화학에너지로 전환하고 물이 분해되며 산소가 방출된다. 암반응에서는 명반응에서 형성된 화학에너지를 이용하여 대기 중의 이산화탄소와 수소를 결합시켜 최종...2025.05.03
-
핵심식물생리학 정리노트 Ch07 광합성 명반응2025.01.181. 광합성 명반응 광합성은 엽록체 가지는 세포들에서 발생하며, 틸라코이드 반응(광합성 명반응)과 탄소고정 반응(설탕 합성)으로 구성됩니다. 광합성 명반응에서는 물 분해, ATP 합성, NADPH 생성이 일어나며, 이를 위해 광계 I과 광계 II가 공간적으로 분리되어 있습니다. 광계 II에서 물이 산화되어 산소가 발생하고, 전자는 시토크롬 b6f 복합체와 광계 I을 거쳐 NADP+가 환원되어 NADPH가 생성됩니다. 이 과정에서 발생한 양성자 기울기는 ATP 합성효소를 통해 ATP 합성을 추진합니다. 2. 광합성 색소 광합성에 관여...2025.01.18
