총 4개
-
제논의 역설 보고서2025.05.011. 제논의 역설 "아킬레스는 거북이를 따라잡을 수 없다." 제논의 역설 "아킬레스는 거북이를 따라잡을 수 없다."에 대한 반박. 아킬레스가 거북이를 따라잡을 수 없다는 논리에는 문제가 있다. 시간과 거리를 함께 고려해야 하며, 무한히 반복되는 과정에서의 시간은 실제로 유한하다. 따라서 아킬레스는 결국 거북이를 따라잡을 수 있다. 2. 제논의 역설 "날고 있는 화살은 정지해 있다." 제논의 역설 "날고 있는 화살은 정지해 있다."에 대한 반박. 화살은 분명 진행방향을 가지고 있으며, 작은 단위의 움직임이 큰 단위의 움직임으로 이어진...2025.05.01
-
대구교대 현대수학의 이해(현수이) 무한개념, 페르마 자료조사2025.05.151. 무한개념 무한(infinite, 無限)하다: 한없이 커지는 상태를 무한하다고 한다. 예를 들어, 선분의 양 끝을 무한히 늘리면 직선이 되고, 소수의 개수는 무한히 많다. 수학은 무한의 과학이며 그 목표는 인간이라는 유한한 수단을 통해 무한을 상징적으로 이해하는 데에 있다. 무한에 대한 논의는 수학적 영역뿐만 아니라 철학적 영역에서도 이루어졌으며, 이와 함께 수학 이론들도 발전해왔다. 무한의 개념은 현대에 이르러 수학적으로 엄밀하게 정립되었다. 2. 제논의 역설 고대 그리스의 철학자 제논이 제시한 역설 중 가장 유명한 것이 아킬...2025.05.15
-
잘 작성된 수학 과목별 세부능력 및 특기사항 예시모음2025.05.161. 카발리에리의 원리 학번이름'실생활에서 수학2 개념 찾기' 프로젝트에서 카발리에리의 원리에 대해 보고서를 작성하였으며 적분을 사용하지 않고 입체의 부피를 구할 수 있음을 알게 되었으며 수학의 유용성을 깨우치며 더욱 수학공부의 흥미를 느끼는 것을 느낌. 2. 샌드위치 정리 '실생활에서 수학2 개념 찾기' 프로젝트에서 샌드위치 정리의 증명을 주제로 수열의 샌드위치정리와 함수의 샌드위치 정리를 증명하고 직접 증명을 통해 수학적 사고력을 기르며 해당 단원의 문제풀이를 더욱 잘하고자 노력을 꾸준히 함이 엿보임. 3. 극한의 엄밀한 정의 ...2025.05.16
-
헤라클레이토스와 파르메니데스의 대립2025.05.111. 헤라클레이토스의 생애 헤라클레이토스는 에페소스의 귀족 출신으로 자신의 능력에 대한 우월감에 빠져있던 영재였다고 한다. 그는 에페소스 사람들을 싫어했고 자신의 친구인 헤르모도로스를 국외로 추방하기도 하면서 민심을 잃기도 하였다. 그는 《자연에 관하여》라는 책을 썼는데, 일반 대중들은 읽지 못하게 내용을 불분명하게 작성했다는 것만 봐도 그가 민중들에게 가졌던 태도를 알 수 있다. 이 때문에 그는 '스코테이노스'라는 별칭으로 불리기도 하였다. 2. 헤라클레이토스의 철학사상 헤라클레이토스의 사상은 '만물유전설'에서 시작한다. '우리는...2025.05.11
