
총 338개
-
[일반생물학A+보고서] 발효의 측정(효모 발효)2025.04.281. 효모 발효 이번 실험에서는 효모의 발효에 의해 당이 분해되는 과정을 알고 알코올 발효를 통해 무기호흡 과정을 알아보았다. 효모와 10% 포도당 용액을 섞고 솜마개를 씌워 손의 온도로 배양을 진행하였다. 시간이 지남에 따라 맹관부의 기체가 더 많이 축적되는 것을 관찰할 수 있었는데, 이는 효모가 당을 분해하여 알코올 발효를 하고 그 과정에서 발생한 이산화탄소가 맹관부에 모이게 되는 것이다. 수산화칼륨 용액과 반응하는 것으로 보아 맹관부의 기체가 이산화탄소라는 것을 확실하게 알 수 있었다. 또한 효모의 생장 온도와 관련하여 30°...2025.04.28
-
에너지대사의 원리에 대하여 기술하시오.2025.01.171. 에너지 대사의 원리 에너지 대사는 생명의 활동, 성장, 유지 및 번식에 필요한 에너지를 생성하고 구성 요소를 제공하는 다양한 생화학적 과정의 원리에 기반하는 복잡한 네트워크입니다. 기본적으로 에너지 대사는 영양소의 에너지 전환과 복잡한 분자의 합성에서 세포 균형의 유지에 이르기까지 일련의 과정을 조절하는 것을 포함합니다. 2. 산화 및 환원 반응 에너지 대사의 핵심 원리로써 물질 사이에서 전자를 주고 받는 산화 및 환원 반응은 호흡과 광합성 과정에서 동시에 일어나며 에너지원인 ATP를 생성하고 유기체의 에너지 균형을 유지 및 ...2025.01.17
-
알코올 발효(Alcohol fermentation) 실험 보고서2025.05.101. 알코올 발효 이 실험은 효모를 이용한 알코올 발효 과정을 관찰하고 발효 조건을 알아보는 것이 목적입니다. 실험에서는 포도당, 설탕, 갈락토오스 등 다양한 당 종류에 따른 이산화탄소 발생량을 측정하였습니다. 결과적으로 포도당이 포함된 용액에서 가장 많은 이산화탄소가 발생하였는데, 이는 포도당이 단당류라 효모 세포막을 통해 빠르게 흡수되어 발효가 잘 일어났기 때문입니다. 반면 갈락토오스는 발효가 잘 되지 않았는데, 이는 효모가 갈락토오스를 분해하는 효소가 부족했거나 실험 시간이 짧아 관찰하지 못했기 때문으로 추정됩니다. 2. 발효...2025.05.10
-
세포호흡과 발효2025.01.161. 세포의 화학에너지 전환 세포호흡은 생물이 산소를 이용하여 유기물을 산화·분해하여 그 과정에서 생체에 이용 가능한 형태로 물질에 함유된 에너지를 획득하는 것이다. 세포호흡을 담당하는 기관은 미토콘드리아이며, 미토콘드리아의 내막에 둘러싸인 기질 안에는 시트르산회로·지방산산화와 산화반응에 관여하는 효소군이 존재한다. 세포호흡의 메커니즘은 당·지방산·아미노산 등이 분해되어 생긴 CoA가 시트르산회로로 들어가서 탈수되어 이산화탄소(CO2)를 발생하고, 수소는 전자전달계를 거쳐서 최종적으로 산소를 이용하는 시토크롬산화효소에 의해 산화되어...2025.01.16
-
식물의 호흡2025.01.191. 식물의 호흡 이번 실험에서는 온도에 따른 식물의 호흡량을 이산화탄소의 생성량으로 측정하고, 온도 조건에 따라 호흡량이 어떻게 달라지는지 Q10(온도계수) 값을 구하여 확인해 보았다. 발아된 콩은 광합성을 할 수 없으므로 호흡작용이 활발하게 일어나 싹을 틔우기 때문에 발아된 콩으로 실험을 진행하였다. 호흡 반응은 산소를 소모하면서 유기 분자를 이산화탄소와 물로 분해하며 이때 발생되는 에너지를 ATP의 형태로 포획한다. 따라서 식물의 호흡량은 산소의 소모량을 측정하거나 이산화탄소 발생량의 측정을 통해 알 수 있다. 온도가 높을수록...2025.01.19
-
식물의 물질대사에서 광합성과 호흡의 관계2025.01.161. 광합성 광합성은 무기물(물, CO2)를 이용하여 생명체 조직인 유기물과 에너지의 원천을 생성하고 생명의 호흡에 필요한 산소를 공급하고 CO2를 흡수하는 과정입니다. 광합성은 빛이 필요한 명반응과 빛이 필요 없고 CO2가 필요한 암반응의 2단계로 진행되며, 명반응의 산물 중 ATP와 NADPH는 암반응에 이용됩니다. 2. 광합성의 에너지 전환 광합성에서 명반응은 흡열 반응, 암반응은 발열 반응이지만, 명반응에서 흡수한 에너지 양이 암반응에서 방출한 에너지양보다 많으므로 광합성은 전체적으로 흡열 반응입니다. 광합성에서의 에너지 이...2025.01.16
-
미생물에서 호흡과 발효의 차이점2025.04.271. 호흡과 발효의 차이점 발효는 산소가 없는 경우 ATP를 합성하기 위해 이루어지는 에너지 생산 과정이며, 포도당이 발포성 지방산으로 대사된다. 호흡은 산소를 필요로 하며 포도당을 통해 더 많은 ATP를 생성한다. 호흡은 해당과정, TCA회로, 산화적 인산화 등의 단계를 거치지만 발효는 부분적 분해가 일어난다. 2. 다양한 발효과정 젖산발효와 에탄올발효는 피루브산을 통해 시작되며, 에탄올이 아세트산이 되는 초산발효는 에탄올에서 시작하고 산소를 필요로 한다. 이 외에도 아미노산발효, 유기산발효, 메탄발효, 핵산발효 등 다양한 발효과...2025.04.27
-
농약의 종류와 특성, 독성 증세2025.01.261. 유기염소계 농약 유기염소계 농약은 대표적인 합성 유기화합물로, 해충의 신경계를 교란하여 해충을 사멸시키는 역할을 한다. 이 농약은 살충 효과가 뛰어나고 장기간 잔류하는 특성이 있어 과거에는 널리 사용되었으나, 현재는 환경과 인체에 미치는 독성이 문제시되어 사용이 제한되고 있다. 유기염소계 농약은 주로 간, 신경계, 면역계에 악영향을 미치며, 발암성, 생식 독성, 신경 독성 등이 주요한 문제로 대두되고 있다. 2. 유기인계 농약 유기인계 농약은 주로 신경 독성을 가지며, 신경전달물질인 아세틸콜린의 분해를 방해하여 신경계에 과도한...2025.01.26
-
핵심식물생리학 정리노트 Ch08 광합성 탄소반응2025.01.181. 캘빈-벤슨 회로 캘빈-벤슨 회로(Calvin-Benson cycle)는 카르복실화, 환원, 재생성의 세 단계를 가진다. CO2 수용체인 RuBP의 카르복실화를 통한 CO2 고정과 3-PG의 환원은 3탄당 인산(3-PGAL)을 합성한다. RuBP는 지속적인 CO2 동화를 위해 재생성된다. 광합성이 정류 상태에 이르면 6분자의 3-PGAL 중 1분자는 엽록체에서 녹말 합성과 세포기질에서의 수크로오스 합성 및 다른 대사 과정에 사용된다. 2. 캘빈-벤슨 회로의 조절 루비스코 활성화효소, CO2가 캘빈-벤슨 회로를 조절한다. 빛은 페...2025.01.18
-
아주대 생물학실험1 결과보고서 [12주차 발효]2025.01.031. 호흡 호흡은 모든 생물에서 일어나는 대사과정으로 영양물질을 산화시켜 에너지를 얻는 과정이다. 호흡에는 산소호흡과 무산소호흡이 있으며, 이번 실험에서는 무산소호흡 중 하나인 발효를 관찰하여 이의 생화학적 특성을 이해하고자 한다. 2. 발효 발효는 산소 없이 에너지를 수확할 수 있는 방법이다. 발효에서 ATP를 생산하는 과정은 세포호흡의 첫 단계와 동일한 해당과정이다. 이번 실험에서는 젖산발효와 알코올발효를 관찰하여 발효의 특성을 이해하고자 한다. 3. 효모 이번 실험에 사용된 효모균은 Saccharomyces cerevisiae...2025.01.03