총 175개
-
식품생화학 아미노산 대사2025.05.071. 아미노산의 합성 아미노산은 질소를 함유하는 물질이며, 단백질의 구성 단위이다. 공기 중에서 고정된 질소는 아미노산으로 합성된 후 단백질 합성의 전구체로 사용된다. 질소 함유 화합물들은 몸 안에 저장되지 않고, 식품에서 섭취한 단백질로부터 생성된 아미노산의 경우 질소가 제거된 후, 유기산으로 전환되어 에너지 대사에 이용되기도 한다. 질소는 요소회로(urea cycle)를 통해 제거 된다. 질소고정 박테리아는 질소화효소 복합체를 이용하여 대기중의 질소를 암모니아로 전환하며, 암모늄이온은 아미노산 합성에 사용된다. 아미노산의 탄소원...2025.05.07
-
A+ 졸업생의 아닐린의 합성 실험 예비 레포트2025.01.141. 아닐린 아닐린은 나이트로 벤젠을 환원제와 함께 반응시켜 만든 방향족 아민 물질입니다. 아닐린은 무색 또는 담황색의 액체로 특유의 냄새를 가지고 있으며, 끓는점은 184°C, 녹는점은 -6°C입니다. 아닐린은 물에 대한 용해도가 작지만 유기용매에는 잘 용해됩니다. 또한 아닐린은 약염기 성질을 나타내는데, 이는 질소의 비공유전자쌍이 공명구조를 형성하기 때문입니다. 2. 아닐린의 합성법 아닐린의 제조 원료에는 나이트로 벤젠, 클로로벤젠, 페놀 등이 있으며, 나이트로 벤젠을 이용한 아닐린 합성에는 두 가지 방법이 있습니다. 첫째, 철...2025.01.14
-
펩타이드 합성 실험2025.01.121. 펩타이드 합성 펩타이드는 항원결정체를 형성하고 효소가 결합되는 곳이며 특이효소, 항생제와 약제를 구성하는 특정 항원결정체를 만들어내는데 자주 쓰인다. 펩타이드 합성은 두 아미노산이 반응하여 펩타이드 결합을 이루는 것이 특징이다. 펩타이드 합성은 아미노산의 N-말단과 C-말단을 보호하고 활성화하여 순차적으로 결합시키는 과정으로 이루어진다. 이번 실험에서는 직접 펩타이드를 합성하고 그 메커니즘을 이해하는 것이 목적이다. 1. 펩타이드 합성 펩타이드 합성은 생명과학 및 의약품 개발 분야에서 매우 중요한 기술입니다. 펩타이드는 아미노...2025.01.12
-
유기합성실험 Aniline systhesis(아닐린 합성) A+ 예비레포트, 결과레포트2025.01.171. 니트로벤젠 니트로벤젠은 방향족 니트로화합물 중 하나로, 벤젠을 황산과 질산으로 니트로화시켜 얻을 수 있다. 무색의 액체이며 분자량 123g/mol, 비중 1.2(0℃), 녹는점 5.8℃, 끓는점 211℃이다. 물에는 잘 녹지 않지만 유기 용매와는 잘 섞인다. 니트로벤젠을 환원시키면 중간물질인 니트로소벤젠, N-페닐히드록실아민을 거쳐 아닐린이 된다. 2. 산화-환원 반응 산화-환원 반응은 물질 간의 전자 이동으로 산화와 환원 반응이 동시에 일어나는 것이다. 전자를 잃은 쪽은 산화수가 증가하고 산화되며, 전자를 얻은 쪽은 산화수가...2025.01.17
-
아미노산2025.04.261. 아미노산의 특성 아미노산의 특성을 이해하는 것은 단백질을 이해하는데 필수적이다. 20가지의 아미노산들은 공통적인 기본 구조를 가지고 있으며, 단지 하나의 곁가지에서 차이를 가진다. 아미노산은 산성기(-COOH)와 염기(-NH2)를 갖는 양성이온이며, 아미노산의 R기에 따라 등전점이 변한다. 단백질은 아미노산의 사슬로 펩타이드 결합을 형성한다. 2. 아미노산의 종류 단백질을 구성하는 주요 아미노산은 22종이며, 이 중 성인에게 필수적인 아미노산은 8종, 유아에게는 9종이다. 비필수아미노산은 체내에서 합성이 가능하지만, 일부는 다...2025.04.26
-
생화학 9단원 효소 요약정리2025.04.301. 효소 촉매 반응과 열역학 효소는 화학 반응의 속도를 매우 빠르게 촉매하지만 활성화 에너지는 변화시키지 않는다. 즉 반응의 활성화 에너지가 변하지 않으므로 평형의 위치 또한 변하지 않게 된다. 전이 상태와 기질 간 깁스 자유 에너지의 차이를 활성화 에너지라고 부르며, 이를 넘어야 기질이 생성물로 바뀔 수 있다. 효소는 활성화 에너지의 값을 낮춰 반응이 용이하게 일어나도록 한다. 즉 효소는 전이 상태의 형성을 촉진한다. 효소와 기질 간의 많은 약한 상호작용이 형성될 때 방출되는 에너지를 결합 에너지라고 부른다. 이러한 상호작용의 ...2025.04.30
-
단백질 검정 실험 결과 보고서2025.05.141. 단백질의 구조 단백질은 20가지의 아미노산이 함께 다른 순서와 비율로 조합이 되어 만들어진 중합체이다. 프롤린을 제외한 아미노산 전부는 α탄소에 공통으로 한 개의 아미노기(NH3+), 한 개의 카르복실기(COO-), 한 개의 수소 원자와 아미노산 각각 저마다 특이한 곁사슬이 결합한 구조를 보인다. 단백질의 크기는 아주 다양하며, 하나 이상의 폴리펩타이드 사슬, 즉 아미노산들이 공유결합을 통하여 하나의 줄로 연결이 된 중합체로 구성되어 있다. 2. 단백질 검정 방법 단백질을 검정하는 다른 방법으로는 크산토프로테인 반응, 뷰렛 반...2025.05.14
-
일반생물학실험(1) 3주차 단백질의 검정2025.05.091. 단백질의 구조 단백질은 화학적으로 비슷한 성질을 공유하는 20가지 아미노산의 조합으로 이루어진다. 단백질의 다양성은 아미노산의 서로 다른 비율과 조합에 의해 생성된다. 단백질은 하나 이상의 폴리펩타이드사슬로 구성되며, 각각의 아미노산에는 알파 탄소 원자에 카르복실기와 아미노기가 부착되어 있다. 이때 카르복실기의 C=O는 약한 음전하를, 아미노기의 N-H는 약한 양전하를 띠는데, 이 비대칭에 의해 수소결합이 이루어지고, 이 결합은 단백질의 기능과 구조를 다양하게 한다. 또한 아미노산에는 단백질의 기능과 3차원 구조를 결정하는 곁...2025.05.09
-
신경전달물질의 이해와 인간행동에 미치는 영향2025.01.031. 아미노산 계열 신경전달물질 아미노산 계열의 신경전달물질은 체내에서 주로 중추신경의 시상하부 등 원시 뇌에서 생존과 신체 통제, 항상성 유지에 중요한 역할을 수행합니다. 대표적인 아미노산 신경전달물질로는 감마-아미노부티르산(GABA), 글루타메이트, 글리신 등이 있습니다. GABA는 억제성 신경전달물질로 불안, 우울, 긴장 등을 완화하고 심리적 안정을 제공합니다. 글루타메이트는 흥분성 신경전달물질로 기억력과 관련이 있지만 과활성화되면 부작용을 일으킬 수 있습니다. 글리신은 중추신경계에서만 작용하는 억제성 신경전달물질로 신체의 안...2025.01.03
-
유전암호2025.05.081. 유전암호 유전암호는 단백질을 구성하는 각 아미노산을 지정하는 대응규칙을 가진 mRNA 암호를 말한다. DNA 유전정보가 mRNA로 전사된 후 단백질로 번역되는 과정에서 적용된다. mRNA의 뉴클레오타이드 3개가 하나의 코돈을 형성하여 아미노산과 연결되며, 이렇게 연결된 아미노산 서열이 폴리펩티드를 형성하여 단백질이 된다. 코돈은 mRNA 상의 3개의 염기서열로 구성되며, 총 64개의 암호화가 가능하다. 코돈에 따라 정해진 아미노산이 연결되며, 개시코돈은 보통 AUG이고 메티오닌이 연결되며, 종료코돈은 UAA, UAG, UGA ...2025.05.08
