
총 19개
-
시계열 데이터 분석 기법과 A/B 검증2025.01.261. 시계열 데이터 분석 기법 시계열 데이터 분석을 위한 대표적인 기법으로 이동 평균법, ARIMA 모델, 지수 평활법, 심층 신경망을 이용한 예측 등이 있다. 각 기법은 데이터의 특성에 따라 장단점이 다르며, 적절한 기법을 선택하여 활용하는 것이 중요하다. 이동 평균법은 단기 변동을 완화하고 장기 경향을 파악하는 데 유용하며, ARIMA 모델은 트렌드와 계절성을 고려한 예측에 적합하다. 지수 평활법은 최근 데이터에 가중치를 두어 변화에 민감하게 반응할 수 있고, 심층 신경망은 복잡한 패턴의 비선형 데이터 분석에 강점이 있다. 2....2025.01.26
-
4차 산업혁명 시대의 핵심 키워드 중 인공지능에 대한 정의와 응용 분야2025.04.271. 4차 산업혁명과 인공지능 4차 산업혁명은 사물인터넷, 인공지능, 로봇기술 등의 발전으로 인해 산업 구조와 사회 체계에 혁신을 일으키고 있다. 인공지능은 이러한 기술들을 효과적으로 관리하고 분석하는 핵심적인 역할을 수행하고 있다. 인공지능은 제조업과 서비스업 분야에서 활용되어 효율성과 편의성을 높이고 있으며, 향후 자율주행 자동차와 로봇 산업 등에서 더욱 발전할 것으로 전망된다. 2. 인공지능의 정의와 발전 인공지능은 인간의 학습, 추론, 지각 등의 능력을 인공적으로 구현한 컴퓨터 프로그램 또는 시스템이다. 인공신경망 구조를 모...2025.04.27
-
[인공지능의세계 A+] 기말고사 문제풀이 객관식 + 서술형 + 단답형 문제+해설2025.05.101. 기계학습 기계학습은 인간의 학습능력을 기계나 컴퓨터에서 구현한 것으로, 지도학습과 비지도학습으로 구분할 수 있다. 지도학습은 학습 데이터의 정답이 주어지는 반면, 비지도학습은 정답이 주어지지 않는다. 신경망은 자동으로 가중치를 학습하는 기계학습 방식이다. 강화학습은 보상을 통해 최적의 행동을 학습하는 방식으로, 알파고가 자체 연습 대국을 통해 좋은 수를 학습하는 데 사용되었다. 2. 클러스터링 K-Means 클러스터링은 데이터를 K개의 클러스터로 분류하는 방법이다. K-Means 클러스터링의 단점은 k의 개수를 사전에 정해야 ...2025.05.10
-
딥러닝을 이용한 COVID-19 흉부 X선 영상 자동 탐지2025.01.031. COVID-19 진단 이 연구에서는 COVID-19 환자를 식별하기 위해 흉부 X선 영상을 사용했습니다. DenseNet169 심층 신경망을 사용하여 이미지 특징을 추출하고 XGBoost 알고리즘을 통해 분류를 수행했습니다. 제안된 방법은 기존 방법보다 더 정확하고 빠르며 허용 가능한 성능을 보였습니다. 이는 의료 영상 분석과 방사선학 분야에서 딥러닝의 발전을 보여줍니다. 2. XGBoost 알고리즘 XGBoost는 2016년 Chen & Guestrin이 제안한 트리 부스팅 기반의 효율적이고 확장 가능한 알고리즘입니다. 여러...2025.01.03
-
인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.05.131. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 기본적으로 인간의 지능 수준을 넘지 못하고 제한된 작업에만 사용되는 인공지능을 의미한다. 반대로 강한 인공지능은 인간의 지능을 초월하여 다양한 작업을 수행하고 사람과 유사한 추론, 학습, 문제 해결 능력을 갖춘 인공지능을 말한다. 약한 인공지능은 사전에 정의된 규칙이나 알고리즘을 사용하여 작업을 수행하지만, 강한 인공지능은 데이터 기반 학습을 통해 지식을 습득하고 문제를 해결한다. 약한 인공지능은 '자아'가 없다는 차이점이 있다. 2. 기계학습의 개념과 특징 기계 학습은 인...2025.05.13
-
인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.05.041. 약한 인공지능과 강한 인공지능 약한 인공지능은 특정한 영역의 문제를 푸는 인공지능 기술로, 문제를 해결하거나 이상적인 업무 연구를 처리하는 데에 널리 사용된다. 약한 인공지능은 기초 데이터나 알고리즘, 규칙 등을 입력해야 한다. 약한 인공지능은 인간이 가지고 있는 인지적인 능력 중에서 한정적인 부분만 사고할 수 있다는 것이 한계이다. 강한 인공지능은 인간의 지능을 바탕으로 생각을 할 수 있는 컴퓨터이다. 강한 인공지능은 명령이 입력되지 않아도 스스로 학습을 할 수 있으며, 인공지능 스스로 보았을 때 지시 사항이 비합리적이라고 ...2025.05.04
-
물리 정보화 신경망(Physics-Informed Neural Network, PINN)2025.05.101. 물리 정보화 신경망(Physics-Informed Neural Network, PINN) 물리 정보화 신경망(Physics-Informed Neural Network, PINN)은 물리학적인 지식을 신경망 구조에 통합하여 과학적 모델링 및 예측에 사용되는 기술입니다. 이 방법은 데이터 기반 기계 학습과 물리학적 모델링을 결합하여 주어진 물리적 시스템에 대한 효율적인 모델링을 수행할 수 있습니다. PINN은 물리학적 법칙과 제약 조건을 신경망 아키텍처에 내재화하여 물리학적 문제를 해결하며, 제한된 데이터 세트로부터 모델을 학습하...2025.05.10
-
경영정보시스템 ) 인공지능의 개념과 기술 그리고 활용사례에 대해 조사2025.01.241. 인공지능의 개념 인공지능의 정의는 범위에 따라 다양하지만, 포괄적인 범위로 인공지능을 정의 내리자면 인공지능이란 어떠한 문제를 스스로 해결할 수 있는 능력을 갖춘 시스템을 말한다. 즉, 인간의 지적 능력을 기계나 컴퓨터를 통해 구현하는 기술이다. 인공지능은 크게 약한 인공지능과 강한 인공지능으로 나눌 수 있다. 약한 인공지능은 특정한 분야나 목표만을 해결할 수 있는 인공지능을 뜻하며, 강한 인공지능은 다양한 목표를 해결할 수 있는 인공지능이다. 2. 인공지능 기술 - 기계학습 기계학습은 알고리즘을 연구하고 활용하는 기술로 엄청...2025.01.24
-
인공지능의 개념과 기술 그리고 활용사례2025.01.091. 인공지능의 개념 인공지능은 인간의 학습, 추론, 문제 해결 등의 능력을 컴퓨터 프로그램이나 시스템을 통해 모방하거나 수행하는 기술을 의미합니다. 인공지능의 주요 특징 중 하나는 기계가 데이터를 학습하고 경험을 쌓아 나가는 능력을 가지고 있다는 것입니다. 이를 통해 기계는 문제를 해결하거나 패턴을 파악할 수 있으며, 인간의 학습과정을 모방하여 새로운 상황에 대처할 수 있게 됩니다. 2. 머신러닝과 딥러닝 머신러닝은 데이터를 기반으로 컴퓨터 시스템이 학습하고 예측을 수행하는 기술이며, 지도 학습, 비지도 학습, 강화 학습 등의 방...2025.01.09
-
인공지능 기술이 활용되고 있는 사례2025.01.051. 구글 딥마인드사의 인공지능 바둑 프로그램 알파고 알파고는 몬테카를로 기법과 심층 인공신경망 기술을 활용하여 기존의 바둑 프로그램을 뛰어넘었다. 알파고는 정책망, 가치망, 검색이라는 3가지 강력한 무기를 가지고 있으며, 전문가들이 예상하지 못한 독창적인 수를 두어 이세돌 9단을 이겼다. 이를 통해 인공지능 기술의 발전을 보여주었다. 2. ChatGPT ChatGPT는 OpenAI에서 개발한 대화형 인공지능 모델로, 사용자의 질문에 대해 자연스러운 언어로 답변을 제공한다. ChatGPT는 강화학습을 통해 인간의 피드백을 반영하여 ...2025.01.05