
총 184개
-
딥러닝 2024년 2학기 방송통신대 출석수업과제물) 인공신경망과 관련된 설명 중 올바른 것을 선택하시오. 다층 퍼셉트론의 구조를 확장하는 방법 등2025.01.261. 인공신경망 인공신경망은 생물학적 뉴런의 작동 원리를 모방하여 만든 기계 학습 모델입니다. 다층 퍼셉트론(MLP)은 인공신경망의 한 형태로, 입력층, 하나 이상의 은닉층, 그리고 출력층으로 구성됩니다. 인공신경망은 복잡한 문제를 해결할 수 있는 능력이 있으며, 활성화 함수를 통해 비선형 관계를 학습할 수 있습니다. 2. 경사 하강법 경사 하강법은 손실 함수의 기울기를 계산하고 이를 활용하여 가중치를 업데이트하는 최적화 알고리즘입니다. 보폭 크기(learning rate)가 너무 크면 손실 함수가 발산하는 문제가 발생할 수 있습니...2025.01.26
-
인공신경망의 작동 원리 및 파이썬을 이용한 신경망의 손글씨 데이터 인식2025.01.141. 인공신경망의 작동 원리 인공신경망은 뇌 속 뉴런의 작동 원리를 컴퓨터로 구현한 정보 처리 시스템이다. 인공신경망은 입력층, 은닉층, 출력층으로 구성되며 입력값과 가중치의 곱을 활성화함수에 넣어 출력값을 생성한다. 행렬곱을 이용하여 가중치 계산을 수행하며, 오차 역전파를 통해 가중치를 업데이트하여 학습을 진행한다. 학습률은 신경망 학습 속도에 중요한 영향을 미친다. 2. 파이썬을 이용한 신경망의 손글씨 데이터 인식 MNIST 데이터베이스의 숫자 손글씨 데이터를 이용하여 3계층 신경망 모델을 구현하였다. 초기화, 학습, 질의의 3...2025.01.14
-
[보고서]GAN에 대한 보고서2025.01.241. GAN GAN은 적대적 훈련을 통해서 만들어지는 모델링이다. 일반적으로 신경망은 정보를 줄이고, 정제하고, 축약하는 데 사용한다. GAN은 이러한 일반적인 신경망의 구조를 변경시켜 만든 새로운 구조의 신경망을 말한다. GAN이란 진짜와 가짜를 구별할 수 없을 정도로 정교한 가짜를 만드는 생성자를 학습하는 알고리즘이다. GAN의 구조는 생성기(Generator)와 판별기(Discriminator)로 이루어져 있으며, 두 신경망이 서로 적대적 관계로 경쟁하면서 성능이 향상된다. GAN의 훈련 과정은 복잡하며, 생성기와 판별기의 성...2025.01.24
-
개미도 뇌가 있을까? (ant brain)2025.05.081. 범고래의 뇌 범고래의 뇌는 인간의 뇌보다 크기가 크고 더 많은 뉴런을 가지고 있지만, 인간의 지능은 단순히 크기나 뉴런 수로만 측정할 수 없는 개념입니다. 인간의 뇌는 복잡한 연결망, 창의성, 추상적 사고, 사회적 지능 및 문화적 영향력과 관련이 있습니다. 2. 해파리의 뇌 해파리는 뇌가 없지만 신경 네트워크의 분산된 구조를 통해 지능적인 움직임을 보입니다. 해파리는 감각 세포와 근육 세포가 분산되어 있으며, 신경망을 통해 연결되어 있어 감각 정보를 처리하고 움직임을 조정할 수 있습니다. 3. 곤충의 뇌 곤충들은 작은 몸집에도...2025.05.08
-
인공지능이 어떻게 사람처럼 생각하게 되는가2025.05.081. 파블로프의 개 실험 파블로프의 개 실험은 동물의 학습과 조건부 반사에 대한 연구를 통해 일반화된 원리를 밝힌 실험입니다. 개에게 음식과 종소리를 연결시켜 종소리만으로도 침샘 분비 반응이 나타나는 조건부 반사를 관찰하였습니다. 이 실험은 행동심리학과 학습 이론에 큰 영향을 주었습니다. 2. 인공 신경망의 학습 인공 신경망은 입력과 출력 사이의 연관성을 학습하는 과정을 거칩니다. 초기에는 무작위로 설정된 가중치와 편향을 학습 데이터를 통해 조정하여 정확한 출력을 만들 수 있도록 개선됩니다. 이는 파블로프의 개 실험에서 관찰된 자극...2025.05.08
-
방송통신대학교(방통대) 머신러닝 과목 출석수업과제물 리포트2025.01.241. 머신러닝의 일반적 처리 과정 머신러닝의 일반적인 처리 과정은 학습과 추론으로 구성됩니다. 학습 단계에서는 데이터 전처리, 특징 추출, 학습 진행, 결정 함수 생성 등의 과정을 거치고, 추론 단계에서는 테스트 데이터 전처리, 특징 추출, 추론 진행, 처리 결과 획득 등의 과정을 거칩니다. 2. 머신러닝의 4가지 주제 머신러닝의 4가지 주요 주제는 분류, 회귀, 군집화, 특징 추출입니다. 분류는 입력을 미리 정의된 이산적인 출력으로 매핑하는 문제이고, 회귀는 입력을 연속적인 실수 값으로 매핑하는 문제입니다. 군집화는 데이터를 교집...2025.01.24
-
딥러닝의 통계적 이해 출석 수업 과제물 (2023, 만점)2025.01.241. Teachable Machine을 이용한 머신러닝 모델 구축 Teachable Machine을 활용하여 이미지를 학습시켰다. 사용한 이미지는 구글 이미지에서 '귀멸의 칼날'이라는 애니메이션의 주인공 4명의 다른 사진들을 각각 10장씩 찾은 뒤 머신러닝의 입력값으로 사용하였다. 본 머신러닝으로 실제로 가지고 있는 피규어 사진을 찍어 이 사진을 입력하면 애니메이션 캐릭터를 정확하게 분류할 수 있는지 파악하고자 하였다. 다양한 하이퍼파라미터 조정을 통해 최적의 정확도를 얻고자 하였으나, 설정에 따른 결과 비교를 대량으로 진행하여 거...2025.01.24
-
물리 정보화 신경망(Physics-Informed Neural Network, PINN)2025.05.101. 물리 정보화 신경망(Physics-Informed Neural Network, PINN) 물리 정보화 신경망(Physics-Informed Neural Network, PINN)은 물리학적인 지식을 신경망 구조에 통합하여 과학적 모델링 및 예측에 사용되는 기술입니다. 이 방법은 데이터 기반 기계 학습과 물리학적 모델링을 결합하여 주어진 물리적 시스템에 대한 효율적인 모델링을 수행할 수 있습니다. PINN은 물리학적 법칙과 제약 조건을 신경망 아키텍처에 내재화하여 물리학적 문제를 해결하며, 제한된 데이터 세트로부터 모델을 학습하...2025.05.10
-
방통대 [딥러닝의통계적이해] 2024 출석과제물 (30점 만점 인증 / 표지제외 18페이지 분량 / 코드 및 해설 포함)2025.01.251. Teachable Machine을 이용한 이미지 분류 Teachable Machine에 판다 이미지 54개와 레서판다 이미지 21개를 각 클래스로 나누어 입력하고 학습시켰다. 학습 시도 횟수인 에포크는 50으로 설정되었으며, 배치 크기는 16으로 설정되었다. 학습률은 0.001로 설정되어 있으며, 학습이 완료된 모델에 테스트 이미지를 입력한 결과 판다와 레서판다의 사진 또는 그림에 대해 대부분 100%로 판단하고 정답을 맞추는 것을 확인할 수 있었다. 레서판다 이미지 샘플 수 부족을 보완하기 위해 학습률을 0.00057로 낮추...2025.01.25
-
인공지능과 기계학습 중간정리2025.01.131. 예측자 예측자는 Y=AX의 관계가 선형일 때 사용된다. 예측자를 구하는 과정은 다음과 같다: 1) 임의의 값 A 설정 2) 주어진 데이터의 X를 대입하여 예측값 Y 출력 3) 목표값과 출력값을 비교하여 오차(error) 구하기 4) 오차가 양수인 경우 A를 늘려야 하며, 오버슈팅을 방지하기 위해 A를 조금씩만 조정해야 한다. 5) 이러한 과정을 반복(iteration)하여 A를 조정해나가는 것이 예측자 구하기의 핵심이다. 2. 분류자 분류자는 X·Y 평면에서 두 그룹을 분류하는 선형분류자를 말한다. 분류자 학습 과정은 다음과 ...2025.01.13