
총 51개
-
[A+레포트] 다음의 문제를 풀이하시오.2025.01.131. 확률론 확률론은 불확실성 하에서의 의사결정을 가능하게 하는 핵심적인 이론적 기반이 된다. 특히, 확률의 조건화, 덧셈법칙, 그리고 곱셈법칙은 경영통계학에서 다루는 다양한 문제 해결에 근본적인 도구로 활용된다. 확률의 조건화는 어떤 사건이 일어난 상황에서 다른 사건이 일어날 확률을 다루며, 이는 정보의 업데이트나 새로운 사실이 알려졌을 때 확률을 조정하는 데 필수적이다. 덧셈법칙은 두 사건의 합집합이 일어날 확률을 계산하는 데 사용되며, 이는 서로 배타적인 사건 또는 서로 배타적이지 않은 사건에서의 확률을 구하는 데 적용된다. ...2025.01.13
-
세상을 바꾸는 아름다운 수학 레포트 A+2025.04.301. 베이즈의 정리 베이즈 토마스 베이즈는 잉글랜드의 장로교 목사로, 신학 논문과 수학 논문을 발표했다. 베이즈 정리는 조건부 확률의 개념을 바탕으로 새로운 정보를 이용하여 사전 확률을 개선하는 방법을 제공한다. 베이즈 정리는 원인과 결과의 순서를 역으로 계산하여 사후 확률을 추정할 수 있다. 2. 베이지안의 추론 베이지안 추론은 사전 확률과 새로운 증거를 토대로 사후 확률을 추론하는 방법이다. 동전 던지기 실험을 통해 사전 확률과 사후 확률의 변화를 보여주며, 데이터가 충분할 경우 서로 다른 사전 확률에서 시작해도 동일한 사후 확...2025.04.30
-
평가 데이터를 활용하여 기존 모델을 업데이트하는 베이지안 추론 (파이썬코드 예제포함)2025.05.091. 베이지안 추론 베이지안 추론은 데이터를 통해 모델을 업데이트하고 불확실성을 다루는데 유용한 통계적 추론 방법입니다. 특히, 새로운 데이터가 주어진 상황에서 모델의 파라미터를 추정하고 예측하기 위해 사용됩니다. 베이지안 추론은 사전 분포와 관측 데이터를 조합하여 사후 분포를 계산하며, 이를 통해 모델의 불확실성을 업데이트할 수 있습니다. 2. 모델 업데이트 데이터에 대한 정보를 사전 분포에 반영하고, 관측 데이터와 사전 분포를 조합하여 사후 분포를 계산함으로써 신뢰할 수 있는 결과를 얻을 수 있습니다. 이를 통해 기존 모델을 새...2025.05.09
-
베이즈 추론에서 비롯된 과학적 질병 검사 탐구보고서2025.01.281. 베이즈 추론 베이즈 추론은 확률변수의 조건부 확률분포와 주변부 확률분포를 연관 짓는 확률이론입니다. 주어진 조건에서 어떠한 현상이 실제로 나타날 확률을 구하는 방법이며, 새로운 증거에 기반을 두어 과거의 정보를 향상하거나 개선할 수 있습니다. 불확실성 하에서 의사결정 문제를 수학적으로 다룰 때 중요하게 이용되며 실생활에 많이 쓰입니다. 2. 조건부 확률 조건부 확률은 어떤 사건이 일어난 조건하에서 다른 사건이 일어날 확률을 뜻합니다. 사건 A가 일어났을 때 사건 B의 조건부 확률을 P(B|A)라고 표시합니다. 조건부 확률은 표...2025.01.28
-
확률이론에 대하여 요약하여 정리하시오2025.04.271. 확률의 공준 확률의 공준은 총 3가지로 정리할 수 있다. 공준1: 0<=P(E)<=1 (모든 확률의 값은 0이상 1이하), 공준2: P(S) = 1 (모든 확률의 합은 1), 공준3: 각 사건이 배반사건일 경우 합사건의 확률은 각각의 확률을 합한 것과 같음. 2. 확률분포 확률분포란 확률변수를 X라 하였을 때 X의 함수이다. 이 X는 특정한 값을 가지는데 그 값을 가질 확률들은 일종의 함수와 같이 특정 분포를 가지게 된다. 예를 들면 주사위를 던지는 실험에서 나올 수 있는 확률변수가 X이고, X의 확률은, P(x=1)=1/6이...2025.04.27
-
확률론(probability theory)의 효과적 활용법 중 한 가지를 주제로 선택하여, 장점을 주장하고 논리적 근거를 예시 등을 구체적으로 제시한 후, 자신만의 고유한 의견으로 마무리 요약하여 기술하시오2025.01.231. 베이즈 정리 베이즈 정리는 사건의 발생 확률을 새로운 정보에 따라 갱신하는 수학적 방법이다. 기본적으로 베이즈 정리는 사전 확률(prior probability)을 바탕으로, 새로운 데이터(또는 증거)를 통해 사후 확률(posterior probability)을 계산하는 과정이다. 베이즈 정리는 다양한 상황에서 적용될 수 있는 유연한 도구로, 복잡한 문제에 대한 해결책을 제공한다. 베이즈 정리의 가장 큰 장점은 유연성과 실시간 데이터 반영이다. 기존의 통계적 접근법은 고정된 데이터를 바탕으로 예측을 하지만, 베이즈 정리는 새로...2025.01.23
-
확률이론에 대하여 요약하여 정리하시오2025.01.181. 확률의 공준 및 확률분포 확률의 공준은 고전적 개념에 속하기 때문에 주관적 개념을 통해 확률을 부여하면 문제가 발생한다. 때문에, 확률을 정의하는 대신 세가지 조건을 만족하면 이를 곧 확률로 한다는 것이 '확률의 공준'이다. 확률분포란 실험이나 관찰에서 시행 가능한 사상으로 구성된 표본공간의 확률 변수를 확률 값으로 이어주는 함수이다. 2. 확률법칙에 대한 정리 덧셈법칙은 여러 개의 사상 중 적어도 하나의 사상이 발생할 확률을 뜻한다. 여확률의 법칙에서 여확률이란 사상 A의 여사건이라고 한다면 사상 A가 일어나지 않은 확률이라...2025.01.18
-
학생들의 IQ와 대학입시 합격률 간의 관계 분석2025.05.031. 단순확률 임의의 한 학생을 선정했을 때 그 학생이 대학에 합격할 확률은 52%이다. 200명의 학생 중 임의로 한 학생을 택했을 때, 그 학생의 IQ가 125를 넘을 확률은 4%이다. 2. 결합확률 임의의 한 학생을 선정했을 때 그 학생이 대학에 합격했을 뿐만 아니라 IQ도 125를 넘을 확률은 28%이다. 임의의 한 학생을 선정했을 때 그 학생이 대학에 합격했지만, IQ는 125를 넘지 않을 확률은 24%이다. 3. 조건부확률 무작위로 한 학생을 뽑았더니, 그 학생의 IQ가 125 미만이라는 것이 알려졌다. 이 학생이 대학에...2025.05.03
-
확률이론에 대하여 요약하여 정리하시오2025.05.011. 확률의 공준과 확률분포 확률의 공준은 모든 확률 이론의 기본적인 전제가 된다. 공준 1은 표본공간에 속하는 모든 원소의 확률값이 0과 1 사이라는 것이며, 공준 2는 표본공간 내 어떤 사상 E가 발생할 확률은 사상 E가 속하는 원소들의 확률을 모두 더한 것과 같다는 것이다. 공준 3은 표본공간이 발생할 확률은 1이며 어떤 사상도 발생하지 않을 확률은 0이라는 것이다. 2. 확률법칙 확률에는 덧셈 법칙, 여 확률의 법칙, 곱셈 법칙이 성립한다. 덧셈 법칙은 표본공간 내 여러 사상 중 적어도 하나 이상의 사상이 발생할 확률은 두 ...2025.05.01
-
확률의 개념을 사례를 들어 설명하고, 제시한 문제를 풀이과정을 포함하여 구하고2025.05.031. 확률의 개념 확률은 특정 사건 혹은 사상이 발생할 가능성을 0과 1 사이의 수로 나타낸 것을 말한다. 확률은 크게 객관적 확률, 고전적 확률, 경험적 확률, 주관적 확률 4가지로 구분할 수 있다. 객관적 확률은 실험이나 관찰을 통해 특정 사상의 발생 가능성을 계산하는 것이며, 고전적 확률은 경험 혹은 실험에 의한 자료가 없더라도 논리적 유추를 통해 계산할 수 있는 확률이다. 경험적 확률은 n번 반복된 실험에서 특정 사상 A가 몇 번 발생하는지 관찰함으로써 계산되며, 주관적 확률은 개인의 경험, 직관, 지식 등에 기초하여 계산된...2025.05.03