총 44개
-
머신러닝의 3가지 학습 방법: 지도학습, 비지도 학습, 강화학습2025.01.041. 지도학습 지도학습은 입력과 출력 간의 관계를 학습하는 방식으로, 정답과 사례를 연결시켜주는 방식으로 이루어집니다. 데이터 집합을 통해 입력과 출력 간의 함수관계를 기계가 배우게 되며, 이렇게 얻어진 함수를 모델이라고 합니다. 지도학습으로 만들 수 있는 대표적인 것은 패턴 분류와 회귀분석입니다. 2. 비지도 학습 비지도학습은 입력 데이터 세트에 레이블을 달아주지 않고, 기계가 데이터를 묶을 수 있는 특징을 스스로 찾아내게 합니다. 비지도 학습은 데이터 집합 속에서 숨겨진 패턴을 배우며, 군집화를 이용해 서로 유사한 데이터를 묶습...2025.01.04
-
군집화 (Clustering) 비지도 학습2025.05.101. 군집화 (Clustering) 군집화(Clustering)는 비지도 학습(Unsupervised Learning)의 한 종류로, 데이터를 서로 유사한 특성을 가진 그룹으로 분류하는 기법입니다. 이를 통해 데이터의 숨겨진 구조나 패턴을 찾거나 비슷한 특성을 가진 데이터를 그룹화하여 관측 및 분석할 수 있습니다. 군집화는 다양한 분야에서 활용되며, 고객 세그먼테이션, 이미지 분류, 소셜 미디어 분석 등에 사용될 수 있습니다. 대표적인 군집화 알고리즘으로는 K-평균 군집화, DBSCAN, 계층적 군집화 등이 있습니다. 2. 불량분석...2025.05.10
-
인공지능 머신러닝 지도학습, 비지도학습, 강화학습의 실사례2025.01.161. 지도학습(Supervised Learning) 지도학습은 입력한 데이터와 출력한 데이터를 각각 공급하여 작동하는 유형으로, 훈련을 통해 알고리즘이 입력값을 바탕으로 내용을 처리하고 모델을 수정하며 원하는 출력에 근접하는 결과물을 산출하게 됩니다. 이는 분류와 예측 문제에 유용한 학습 방법으로, 스팸 이메일 탐지 기능은 대표적인 사례입니다. 해당 모델은 '스팸 메일'과 '비스팸 메일'로 레이블이 지정된 이메일 데이터 집합을 통해 학습되며, 키워드, 발신자 정보, 이메일 구조 및 내용과 같은 특징을 사용하여 새로운 수신 이메일을 ...2025.01.16
-
데이터 사이언티스트 인터뷰 준비2025.01.201. 데이터 전처리 데이터셋에 존재할 수 있는 결측값과 이상치를 처리하는 것이 중요하다. 결측값은 평균, 중앙값 등으로 대체하거나 제거할 수 있으며, 이상치는 상자 그림이나 Z-점수를 사용해 식별하고 제거하거나 대체할 수 있다. 또한 데이터의 스케일을 맞추기 위해 정규화 작업이 필요하다. 2. 머신러닝 모델 과적합 방지 과적합을 방지하기 위해 교차 검증, 정규화 기법(L1, L2), 조기 종료 등의 방법을 사용할 수 있다. 교차 검증을 통해 데이터를 최대한 활용하고 모델의 일반화 성능을 평가할 수 있으며, 정규화 기법은 모델의 복잡...2025.01.20
-
건국대학교 오픈소스SW프로젝트 1 머신러닝으로 해결할 수 있는 문제, 머신러닝의 세가지 요소2025.01.191. 머신러닝을 적용할 수 있는 문제 사용자의 음식 기호에 맞는 한식 추천 문제를 해결하기 위해 비지도학습의 분류를 사용할 수 있으며, 서포트벡터 머신 모델을 고려하고 있다. 또한 사용자에게 세 가지 정도의 한식을 추천하는 것을 목표로 하고 있다. 2. 머신러닝의 3가지 요소 머신러닝의 핵심 요소는 Task, Experience, Performance measure이다. Task는 머신러닝을 통해 해결하려는 문제, Experience는 실제 데이터를 바탕으로 한 학습, Performance measure는 학습을 바탕으로 생성된 모...2025.01.19
-
자신의 신체적 특성을 고려한 건강 및 체력 향상을 위한 트레이닝 프로그램 작성2024.12.311. 트레이닝 방법론 자신의 신체적 특성을 정확하게 파악하여 건강 및 체력 향상을 위한 트레이닝 프로그램을 작성해야 한다. 기존에는 3분할 프로그램을 진행했으나, 단일 관절 운동 후 복합 관절 운동을 하는 방식으로 변경하여 최대 무게를 올릴 수 있도록 한다. 운동 방식은 피라미드 세트를 활용하며, 단일 관절 운동은 메인 운동에 영향을 주지 않는 선에서 진행한다. 1. 트레이닝 방법론 트레이닝 방법론은 인공지능 시스템을 개발하는 데 있어 매우 중요한 부분입니다. 효과적인 트레이닝 방법론을 선택하는 것은 모델의 성능과 신뢰성을 높이는 ...2024.12.31
-
인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.05.131. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 기본적으로 인간의 지능 수준을 넘지 못하고 제한된 작업에만 사용되는 인공지능을 의미한다. 반대로 강한 인공지능은 인간의 지능을 초월하여 다양한 작업을 수행하고 사람과 유사한 추론, 학습, 문제 해결 능력을 갖춘 인공지능을 말한다. 약한 인공지능은 사전에 정의된 규칙이나 알고리즘을 사용하여 작업을 수행하지만, 강한 인공지능은 데이터 기반 학습을 통해 지식을 습득하고 문제를 해결한다. 약한 인공지능은 '자아'가 없다는 차이점이 있다. 2. 기계학습의 개념과 특징 기계 학습은 인...2025.05.13
-
경영정보시스템과 인공지능(AI) 기술의 발전 및 응용2025.01.241. 약한 인공지능과 강한 인공지능 인공지능은 수행 능력과 인지 수준에 따라 약한 인공지능(Narrow AI)과 강한 인공지능(General AI)으로 구분됩니다. 약한 인공지능은 특정 과제에 특화된 지능으로, 인간의 뇌와 같은 종합적 사고를 하진 않지만 특정 목적을 달성하기 위해 최적화된 지능입니다. 반면 강한 인공지능은 인간과 비슷한 수준의 종합적인 사고와 문제 해결 능력을 가진 지능을 목표로 합니다. 2. 기계학습의 개념과 특징 기계학습(Machine Learning)은 인공지능의 한 분야로, 컴퓨터가 데이터를 기반으로 스스로...2025.01.24
-
방송통신대학교(방통대) 머신러닝 과목 출석수업과제물 리포트2025.01.241. 머신러닝의 일반적 처리 과정 머신러닝의 일반적인 처리 과정은 학습과 추론으로 구성됩니다. 학습 단계에서는 데이터 전처리, 특징 추출, 학습 진행, 결정 함수 생성 등의 과정을 거치고, 추론 단계에서는 테스트 데이터 전처리, 특징 추출, 추론 진행, 처리 결과 획득 등의 과정을 거칩니다. 2. 머신러닝의 4가지 주제 머신러닝의 4가지 주요 주제는 분류, 회귀, 군집화, 특징 추출입니다. 분류는 입력을 미리 정의된 이산적인 출력으로 매핑하는 문제이고, 회귀는 입력을 연속적인 실수 값으로 매핑하는 문제입니다. 군집화는 데이터를 교집...2025.01.24
-
[인공지능의세계 A+] 기말고사 문제풀이 객관식 + 서술형 + 단답형 문제+해설2025.05.101. 기계학습 기계학습은 인간의 학습능력을 기계나 컴퓨터에서 구현한 것으로, 지도학습과 비지도학습으로 구분할 수 있다. 지도학습은 학습 데이터의 정답이 주어지는 반면, 비지도학습은 정답이 주어지지 않는다. 신경망은 자동으로 가중치를 학습하는 기계학습 방식이다. 강화학습은 보상을 통해 최적의 행동을 학습하는 방식으로, 알파고가 자체 연습 대국을 통해 좋은 수를 학습하는 데 사용되었다. 2. 클러스터링 K-Means 클러스터링은 데이터를 K개의 클러스터로 분류하는 방법이다. K-Means 클러스터링의 단점은 k의 개수를 사전에 정해야 ...2025.05.10
