
총 76개
-
고등미적분학 빈출 Theorem 정리본2025.01.041. 미적분학 정리 이 자료는 고등학교 미적분학에서 자주 출제되는 주요 정리들을 정리한 것입니다. 여기에는 도함수 정리, 적분 정리, 극한 정리 등이 포함되어 있습니다. 이러한 정리들은 미적분학 문제 풀이에 필수적이므로, 이 자료를 통해 중요한 정리들을 체계적으로 정리할 수 있습니다. 1. 미적분학 정리 미적분학은 수학의 핵심 분야 중 하나로, 다양한 실생활 문제를 해결하는 데 필수적인 도구입니다. 미적분학의 주요 정리들은 함수의 성질을 이해하고 분석하는 데 도움을 줍니다. 예를 들어 미분 정리는 함수의 변화율을 계산할 수 있게 해...2025.01.04
-
CT 스캔에서의 미적분학적 기법 적용2025.01.291. CT 스캔의 원리 CT 스캔은 X선 투과와 감지를 통해 신체 내부의 단면 이미지를 생성합니다. X선이 신체를 통과하면서 내부 구조를 파악하고, 여러 각도에서 촬영된 이미지 데이터를 사용해 신체 내부의 단면 이미지를 재구성합니다. 2. 적분의 적용 CT 스캔에서 단면 이미지를 재구성하기 위해 사용되는 대표적인 수학적 기법은 라돈 변환입니다. 라돈 변환은 함수의 적분을 통해 2차원 함수의 투영 데이터를 계산하는 방법입니다. 이를 통해 각 지점에서의 흡수 계수를 계산할 수 있습니다. 단면 이미지를 재구성하기 위해서는 라돈 변환의 역...2025.01.29
-
더 이상한 수학 - 1부- happycampus2025.05.071. 미적분학의 기본 개념 미적분학의 기본 개념인 미분, 적분, 도함수 등을 설명하고 있습니다. 시간과 공간, 속도와 가속도 등의 관계를 미적분학으로 설명할 수 있음을 보여줍니다. 2. 미적분학의 다양한 응용 미적분학이 우주, 유행, 수수께끼, 최적화 문제 등 다양한 분야에 활용될 수 있음을 보여줍니다. 미적분학이 단순한 계산 도구가 아니라 세상을 이해하고 설명하는 강력한 수학적 도구임을 강조합니다. 3. 미적분학의 역사와 발전 미적분학의 역사와 발전 과정을 설명합니다. 라이프니츠, 뉴턴 등 수학자들의 업적과 함께 미적분학이 점점 ...2025.05.07
-
움직이는 세계, 미적분2025.01.041. 미적분학의 역사와 발전 미적분학의 초기 아이디어는 고대 그리스와 바벨론 문화에서 기원이 되었으며, 아르키메데스, 뉴턴, 오일러, 라그랑주, 라플라스 등의 수학자들에 의해 발전되었다. 뉴턴의 미적분학은 물리학에 큰 영향을 미쳤으며, 현대 수학의 기반이 되는 중요한 분야 중 하나이다. 2. 미분과 적분의 개념 미분은 함수의 순간 변화율을 나타내는 개념으로, 함수의 도함수를 계산하여 변화율, 최댓값/최솟값, 기울기 등을 분석할 수 있다. 적분은 함수의 면적 또는 누적된 변화를 나타내는 개념으로, 부정적분을 통해 함수를 얻을 수 있다...2025.01.04
-
미적분의 역사발생적 원리로 무난하게 미적분 세특을 완성할 수 있습니다2025.01.291. 고대 그리스와 아르키메데스 미적분학의 기초 개념은 고대 그리스의 수학자 아르키메데스에 의해 확립되었습니다. 아르키메데스는 면적과 체적을 구하는 문제를 다루며 적분의 기초를 닦았습니다. 그는 극한의 개념을 이용하여 곡선 아래의 면적을 구하는 방법을 개발하였으며, 이는 훗날 적분의 기본 개념이 되었습니다. 2. 중세와 르네상스 시대 중세와 르네상스 시대에는 수학이 다소 침체기를 겪었으나, 이슬람 수학자들을 중심으로 여러 수학적 개념이 발전하였습니다. 이 시기에 극한과 관련된 개념들이 조금씩 등장하였고, 이를 통해 미적분학의 발전을...2025.01.29
-
라이프니츠의 수학적 업적2025.01.201. 미적분학 이론 발전 라이프니츠는 일반적인 미적분학 이론의 발전과 무한급수에 대한 연구로 가장 위대한 수학적 업적을 남겼다. 그는 접선의 기울기를 좌표계의 축에 따른 '무한히 작은' 거리의 비로 나타내고, 이를 dx, dy와 같은 기호로 표현했다. 또한 곡선 밑의 면적을 구하는 방법으로 직사각형의 합을 이용하여 근사값을 구하고, 이를 통해 적분의 개념을 발전시켰다. 그는 미분, 미분계수, 적분의 개념을 d(), dy/dx, ∫()와 같은 기호로 표기하는 방법을 개발했다. 2. 미분계수 및 적분 연산 법칙 발견 라이프니츠는 미분계...2025.01.20
-
매력적인 생기부 만들기 - 세특 작성 꿀팁과 구체적인 예시2025.01.291. CT에 적용된 적분의 원리 병원에서 환자들이 많이 이용하는 컴퓨터 단층 촬영 장치인 CT에 적용된 적분의 원리를 탐구하고, 연구한 내용을 발표하는 과정을 진행하였음. CT 스캔에서 사용되는 적분의 원리를 이해하기 위해 CT 이미지 재구성 과정과 라돈 변환에 대해 학습하였음. 특히, CT 이미지가 여러 각도에서 촬영된 X선 데이터를 기반으로 적분을 통해 재구성되는 과정을 탐구하며, 적분이 어떻게 이미지의 각 단면을 형성하는지 분석하였음. 이를 통해 환자의 신체 내부 구조를 정확하게 시각화하는 데 적분이 필수적인 역할을 한다는 것...2025.01.29
-
뉴턴의 수학적 업적2025.01.201. 일반화된 이항정리의 발견 뉴턴은 영국 수학자 월리스가 1656년 발표한 양의 정수 n에 대한 곡선 y=(1-x^n)의 아랫부분 면적을 구하는 새로운 방법을 확장하여, 임의의 x값까지의 면적을 구할 수 있게 하였다. 그 결과로 만들어진 다항식의 계수들이 프랑스 수학자 파스칼이 연구한 산술삼각형의 값들과 같다는 것을 발견하였다. 뉴턴은 이러한 이항계수들을 임의의 유리수 n과 양의 정수 k에 대해 일반화하여 정의하였다. 이를 통해 임의의 유리수 n에 대한 곡선 y=(1-x^2)^n의 아랫부분 면적을 무한합의 형태로 나타낼 수 있게 ...2025.01.20
-
아르키메데스의 수학적 업적2025.01.201. 아르키메데스의 수학적 업적 아르키메데스는 기원전 287년 출생한 것으로 추정되며 기원전 212년 2차 포에니 전쟁 중 사망하였다. 그의 거의 모든 논문은 9세기 초와 10세기에 콘스탄티노플에서 양피지 위에 그리스어 소문자로 필사되었다. 그의 주요 업적은 다음과 같다: 1. 천칭을 이용하는 기계적물리적 방법으로 도형을 적분하는 과정을 소개한 '방법'이라는 논문을 남겼다. 그는 도형의 넓이와 부피와 같은 기하학적 성질을 알아내기 위해 천칭의 원리를 이용하였다. 2. 포물선 조각의 넓이, 구의 부피, 구의 겉넓이 등을 구하는 공...2025.01.20
-
데이터과학과 지원 맞춤형 세특 기재 예시2025.01.101. 세계 지리 매사 적극적인 태도와 과목에 대한 높은 이해도를 바탕으로 수업에 참여함. 자신의 관심사와 교과 내용이 결합한 도서를 직접 찾아 읽는 모습을 통해 학습에 대한 높은 열의를 관찰함. 아랍 에미리트의 기후와 지형적 특징을 활용해 로고를 제작함. 국기의 색, 상징물, 영토의 형태 등을 두루 조합하여 로고를 제작하는 모습에서 과제에 대한 열의와 문제해결 능력을 관찰함. 또한 해당 국가에 대한 꼼꼼한 조사 결과물을 통해 뛰어난 정보 처리능력을 확인함. 2. 물리학 학업 성취도가 매우 높으며 수업 내용의 맥락을 이해하는 능력도 ...2025.01.10