
총 10개
-
Regression with an Abalone Dataset 코드2025.01.271. 데이터 로딩 및 전처리 train.csv와 test.csv 파일을 pandas 라이브러리를 사용하여 로드했습니다. LabelEncoder를 사용하여 범주형 변수(sex)를 숫자 값으로 인코딩했습니다. 새로운 특성인 size(length x diameter x height)를 만들기 위해 특성 엔지니어링을 수행했습니다. 높이 값이 0인 행을 제거하여 데이터를 정리했습니다. 2. 데이터 변환 대부분의 특성에 대해 np.log1p 함수를 적용하여 로그 변환을 수행했습니다. 이 변환은 데이터 분포를 정규 분포에 가깝게 만들어 모델 성...2025.01.27
-
의사결정 트리(Decision Trees)2025.05.101. 의사결정 트리(Decision Trees) 의사결정 트리(Decision Trees)는 머신러닝에서 가장 널리 사용되는 분류(classification) 및 회귀(regression) 알고리즘 중 하나입니다. 이는 데이터의 특징을 기반으로 한 의사 결정 규칙의 계층적 트리 모델을 나타냅니다. 의사결정 트리는 간단하고 해석하기 쉬운 모델로 알려져 있으며, 데이터의 특징을 직관적으로 이해할 수 있는 장점이 있습니다. 2. 의사결정 트리의 구조 의사결정 트리는 다음과 같은 구조로 이루어져 있습니다: 노드(Nodes), 가지(Edge...2025.05.10
-
랜덤 포레스트 (Random Forest Algorithm)2025.05.091. 랜덤 포레스트 (Random Forest Algorithm) 랜덤 포레스트는 특이하고 재미있는 방법론으로, 앙상블 학습(Ensemble Learning)의 한 종류입니다. 앙상블 학습은 여러 개별적인 학습 모델을 조합하여 보다 강력하고 정확한 예측 모델을 구축하는 기법입니다. Random Forest는 이러한 개별 모델로 결정 트리(Decision Tree)를 사용합니다. 하지만 단일 결정 트리를 사용하는 것이 아니라 수백 또는 수천 개의 결정 트리를 생성하고 이들을 조합하여 학습하고 예측을 수행하며, 이들을 결합하여 보다 정...2025.05.09
-
데이터마이닝 ) 나무 형태를 이용한 지식 표현 사례2025.01.031. 의사결정나무 의사결정나무는 예측모형에서 가장 많이 사용되며 의사결정 규칙을 도표화하여 대상 집단을 분류하거나 예측하는 분석 방법입니다. 의사결정나무의 장점은 나무구조에 의해 모형이 표현되어 사용자의 이해가 쉽고, 유용한 예측변수나 비선형성을 자동으로 찾아낼 수 있으며, 선형성이나 정규성, 등분산성과 같은 가정을 필요로 하지 않는 비모수적인 방법이라는 것입니다. 하지만 의사결정나무 모형은 연속형 변수를 비연속적인 값으로 취급하여 분리의 경계점에서 예측오류가 큰 가능성이 있고, 선형성과 주 효과를 가지지 못한다는 단점이 있습니다....2025.01.03
-
데이터 사이언티스트 인터뷰 준비2025.01.201. 데이터 전처리 데이터셋에 존재할 수 있는 결측값과 이상치를 처리하는 것이 중요하다. 결측값은 평균, 중앙값 등으로 대체하거나 제거할 수 있으며, 이상치는 상자 그림이나 Z-점수를 사용해 식별하고 제거하거나 대체할 수 있다. 또한 데이터의 스케일을 맞추기 위해 정규화 작업이 필요하다. 2. 머신러닝 모델 과적합 방지 과적합을 방지하기 위해 교차 검증, 정규화 기법(L1, L2), 조기 종료 등의 방법을 사용할 수 있다. 교차 검증을 통해 데이터를 최대한 활용하고 모델의 일반화 성능을 평가할 수 있으며, 정규화 기법은 모델의 복잡...2025.01.20
-
머신러닝과 수율 영향인자 분석하기2025.05.101. 수율 영향 요소 제조 과정에서 수율에 영향을 미치는 주요 요소로는 원자재 품질, 공정 설계 및 제어, 장비 및 기술, 작업자의 기술과 교육, 품질 관리 시스템, 환경 조건 등이 있습니다. 이러한 요소들은 제조 산업의 특성과 제품에 따라 다를 수 있지만, 일반적으로 수율 향상을 위해서는 이러한 요소들을 관리하고 최적화하는 것이 중요합니다. 2. 머신러닝을 활용한 수율 영향성 분석 머신러닝을 활용하여 수율 영향성을 분석하기 위해서는 데이터 수집, 전처리, 특성 선택 및 추출, 모델 구축, 학습 및 평가, 결과 해석 등의 단계를 거...2025.05.10
-
머신러닝에서의 불확실성2025.05.111. 데이터 불확실성 데이터의 일부 샘플에 레이블이 없거나 부정확한 경우, 데이터에 잡음이나 이상치가 포함되어 있거나, 데이터가 불완전한 경우 등 데이터 불확실성이 발생할 수 있습니다. 이는 모델이 정확한 예측을 하기 어렵게 만듭니다. 2. 모델 불확실성 모델이 복잡할수록 과적합될 가능성이 높아져 일반화 능력이 감소하고, 모델의 파라미터 값이 정확하게 알려지지 않는 경우 예측의 불확실성이 증가할 수 있습니다. 3. 환경 불확실성 데이터의 분포가 시간에 따라 변하거나 외부 요인이 발생하는 경우, 모델이 이러한 변동성을 정확하게 모델링...2025.05.11
-
AI 기술이 회계 분야에 미치는 영향에 대한 문학적 고찰2025.01.191. AI 기술의 회계 분야 활용 AI 기술은 회계 전문가와 재무 분석가가 회계 기간 동안 발생한 거래를 파악하는 데 도움을 줄 수 있습니다. 또한 이를 활용하여 손익계산서, 재무상태표, 현금흐름표와 같은 재무제표를 작성할 수 있습니다. AI는 회사가 더 시기적절하고 정확한 재무제표를 제공할 수 있도록 도와줍니다. 또한 AI는 회계 오류를 최소화하고 재고 가치 평가와 현금 유동성 분석과 같은 작업을 자동화할 수 있습니다. 2. AI 기술의 회계 감사 절차 활용 AI 기술은 회계 감사 과정에서 회계 부정을 탐지할 수 있는 능력을 가지...2025.01.19
-
머신러닝 효과검증2025.05.101. 머신러닝 효과검증 머신러닝 과제의 실제 효과를 보여주기 위해 다음과 같은 방법들을 고려할 수 있습니다: 정량적인 성능 개선, 시간과 비용 절감, 예측 능력 개선, 인사이트 제공, 실제 시스템 통합. 이러한 방법들을 통해 머신러닝 과제의 실제 효과를 증명할 수 있습니다. 과제의 목적과 환경에 따라 적절한 방식으로 결과를 제시하는 것이 중요합니다. 2. 제조 수율영향성 분석 수율 영향성을 분석하는 머신러닝 과제를 위한 분석 툴을 제작하기 위해 다음과 같은 절차를 따를 수 있습니다: 데이터 수집, 데이터 전처리, 특성 선택 및 추출...2025.05.10
-
[생산관리, SCM] 수요예측_비즈니스 성장과 효율성을 위한 전략적 도구2025.05.081. 수요예측의 개념과 중요성 수요예측은 기업과 조직이 제품 또는 서비스의 수요를 정확하게 예측하는 과정으로, 효율적인 운영 및 공급망 관리를 위한 중요한 요소입니다. 수요예측은 기업이 생산 계획, 자재 관리, 재고 관리, 주문 및 공급 계획 등을 최적화하는 데 필수적인 정보를 제공합니다. 정확한 수요예측은 기업의 비용 절감과 생산력 향상을 도모하며, 고객 만족도와 경쟁력을 향상시킬 수 있습니다. 2. 수요예측 기법 종류 수요예측 기법은 기초 수요예측 기법, 통계적 수요예측 기법, 기계학습 기반 수요예측 기법으로 구분됩니다. 기초 ...2025.05.08