총 114개
-
데이터 사이언티스트 인터뷰 준비2025.01.201. 데이터 전처리 데이터셋에 존재할 수 있는 결측값과 이상치를 처리하는 것이 중요하다. 결측값은 평균, 중앙값 등으로 대체하거나 제거할 수 있으며, 이상치는 상자 그림이나 Z-점수를 사용해 식별하고 제거하거나 대체할 수 있다. 또한 데이터의 스케일을 맞추기 위해 정규화 작업이 필요하다. 2. 머신러닝 모델 과적합 방지 과적합을 방지하기 위해 교차 검증, 정규화 기법(L1, L2), 조기 종료 등의 방법을 사용할 수 있다. 교차 검증을 통해 데이터를 최대한 활용하고 모델의 일반화 성능을 평가할 수 있으며, 정규화 기법은 모델의 복잡...2025.01.20
-
머신 러닝 학습을 위한 데이터 증량하기2025.05.081. 데이터 증강 데이터 증강(Data Augmentation)은 현대 머신러닝과 딥러닝 분야에서 핵심 개념이 되었습니다. 데이터의 양과 질은 모델의 성능과 일반화 능력에 큰 영향을 미치지만, 현실적인 제약으로 인해 충분한 양의 고품질 데이터를 수집하기 어려운 문제를 해결하기 위해 데이터 증강이 등장하였습니다. 데이터 증강은 기존의 데이터를 변형하여 새로운 데이터를 생성하는 과정으로, 모델의 학습과 예측 능력을 향상시킬 수 있습니다. 2. 데이터 증강 기법 다양한 데이터 증강 기법이 개발되어 있으며, 이를 통해 다양한 유형의 데이터...2025.05.08
-
의사결정 트리(Decision Trees)2025.05.101. 의사결정 트리(Decision Trees) 의사결정 트리(Decision Trees)는 머신러닝에서 가장 널리 사용되는 분류(classification) 및 회귀(regression) 알고리즘 중 하나입니다. 이는 데이터의 특징을 기반으로 한 의사 결정 규칙의 계층적 트리 모델을 나타냅니다. 의사결정 트리는 간단하고 해석하기 쉬운 모델로 알려져 있으며, 데이터의 특징을 직관적으로 이해할 수 있는 장점이 있습니다. 2. 의사결정 트리의 구조 의사결정 트리는 다음과 같은 구조로 이루어져 있습니다: 노드(Nodes), 가지(Edge...2025.05.10
-
머신러닝에서의 과적합 문제2025.05.101. 과적합(Overfitting) 과적합은 머신러닝에서 중요한 문제 중 하나입니다. 머신러닝 모델이 훈련 데이터에 너무 특화되어 있어 새로운 입력 데이터에 대한 예측 능력이 저하되는 현상을 말합니다. 이는 모델의 성능과 일반화(generalization) 능력을 감소시키며, 실제 응용에서 신뢰할 수 없는 결과를 초래할 수 있습니다. 2. 과적합의 원인 과적합은 데이터의 특성을 완벽하게 기억하는 것에서 비롯됩니다. 모델은 훈련 데이터에 맞추기 위해 복잡한 패턴과 노이즈까지도 학습할 수 있습니다. 일반적으로 데이터의 양이 적은 경우,...2025.05.10
-
머신러닝 효과검증2025.05.101. 머신러닝 효과검증 머신러닝 과제의 실제 효과를 보여주기 위해 다음과 같은 방법들을 고려할 수 있습니다: 정량적인 성능 개선, 시간과 비용 절감, 예측 능력 개선, 인사이트 제공, 실제 시스템 통합. 이러한 방법들을 통해 머신러닝 과제의 실제 효과를 증명할 수 있습니다. 과제의 목적과 환경에 따라 적절한 방식으로 결과를 제시하는 것이 중요합니다. 2. 제조 수율영향성 분석 수율 영향성을 분석하는 머신러닝 과제를 위한 분석 툴을 제작하기 위해 다음과 같은 절차를 따를 수 있습니다: 데이터 수집, 데이터 전처리, 특성 선택 및 추출...2025.05.10
-
교류및전자회로실험 설계제안서(전압 및 전류 모니터링이 가능한 Battery 충전기)2025.01.201. 리튬이온 배터리 구조 리튬이온 배터리는 양극, 음극, 전해액, 분리막으로 구성되어 있습니다. 양극은 양극활물질, 도전재, 바인더로 이루어져 배터리의 용량과 전압을 결정하고, 음극은 음극활물질, 도전재, 바인더로 이루어져 전자를 내보내는 역할을 합니다. 전해액은 양극과 음극 간 리튬 이온의 매개체 역할을 하며, 분리막은 양극과 음극을 물리적으로 차단하는 역할을 합니다. 2. 충전방식과 C-rate 리튬이온 배터리 충전 방식에는 CC(정전류), CV(정전압), CC-CV(정전류-정전압) 방식이 있습니다. CC 방식은 일정한 전류로...2025.01.20
-
데이터마이닝 ) 나무 형태를 이용한 지식 표현 사례2025.01.031. 의사결정나무 의사결정나무는 예측모형에서 가장 많이 사용되며 의사결정 규칙을 도표화하여 대상 집단을 분류하거나 예측하는 분석 방법입니다. 의사결정나무의 장점은 나무구조에 의해 모형이 표현되어 사용자의 이해가 쉽고, 유용한 예측변수나 비선형성을 자동으로 찾아낼 수 있으며, 선형성이나 정규성, 등분산성과 같은 가정을 필요로 하지 않는 비모수적인 방법이라는 것입니다. 하지만 의사결정나무 모형은 연속형 변수를 비연속적인 값으로 취급하여 분리의 경계점에서 예측오류가 큰 가능성이 있고, 선형성과 주 효과를 가지지 못한다는 단점이 있습니다....2025.01.03
-
정전압 회로와 리미터2025.01.021. 전압 레귤레이터 전압 레귤레이터는 교류 전압을 직류 전압으로 전환하기 위해 사용했던 정류회로의 리플이 매우 크며 입력 전압이나 부하 저항에 따라 출력되는 전압이 크게 요동친다는 단점을 보완하기 위해 필요한 장치입니다. 또한 다양한 전압을 필요로 하는 전자기기 내에서, 정해진 전압을 일정하게 출력하기 위해 필요한 장치이기도 합니다. 전압 레귤레이터는 라인 레귤레이션 특성과 부하 레귤레이션 특성을 만족해야 합니다. PN 접합 다이오드와 제너 다이오드를 이용한 전압 레귤레이터의 동작 원리와 입력 전압 및 부하 전류 변화에 따른 출력...2025.01.02
-
인공지능과 기계학습 기말정리2025.01.131. 신경망의 오차 출력계층의 오차와 은닉계층의 오차를 구하는 방법에 대해 설명합니다. 출력계층의 오차는 목표값과 출력값의 차이이지만, 은닉계층에는 목표값이 존재하지 않기 때문에 출력계층의 오차를 재조합하여 은닉계층의 오차를 구합니다. 이러한 방식을 역전파라고 합니다. 2. 경사하강법 오차함수의 기울기에 따라 가중치를 조정하는 경사하강법에 대해 설명합니다. 오차함수로는 제곱오차 방식을 사용하며, 기울기의 부호에 따라 가중치를 반대 방향으로 조정합니다. 오버슈팅을 방지하기 위해 기울기가 완만해질수록 조금씩만 움직이도록 합니다. 3. ...2025.01.13
-
[보고서]딥러닝 모델링 성능 향상 기법2025.01.241. 손실함수 신경망의 성능을 개선하기 위한 방법 중 하나로 손실함수에 대해 다루었습니다. 연속형 모델의 경우 평균 제곱 오차법(MSE)을, 이산형 모델의 경우 이진 교차 엔트로피(BCE) 손실을 사용하는 것이 적합하다고 설명하고 있습니다. Pytorch에서는 nn.MSELoss()와 nn.BCELoss()를 사용할 수 있습니다. 2. 활성화 함수 신경망 훈련 시 기울기 소실 문제를 해결하기 위해 다양한 활성화 함수에 대해 설명하고 있습니다. 전통적인 시그모이드 함수의 문제점을 지적하고, ReLU와 Leaky ReLU 함수를 소개하...2025.01.24
