총 41개
-
[요약문] <공학수학> 1. 저계, 고계 미분방정식이론2025.01.131. 미분방정식 미분방정식의 용어와 정의, 1계 상미분 방정식의 해법, 완전 미분방정식과 불완전 미분방정식의 구분 및 해법, 특수한 1계 미분방정식(변수분리형, 동차형, 선형)의 해법 등을 설명하고 있습니다. 2. 고계 미분방정식 n계 제차 미분방정식과 n계 비제차 미분방정식의 정의와 해법, 실 계수 제차 미분방정식과 Cauchy-Euler 방정식의 해법 등을 설명하고 있습니다. 3. 2계 비선형 미분방정식 독립변수나 종속변수가 결여된 2계 비선형 미분방정식의 해법을 설명하고 있습니다. 1. 미분방정식 미분방정식은 수학의 중요한 분...2025.01.13
-
미적분, 화학 연계 발표자료 - 반감기와 미적분2025.01.211. 반감기 반감기란 어떠한 물질의 양이 초기값의 절반이 되는데 걸리는 시간을 말합니다. 화학반응 속도를 구하는 데 중요한 요소이며, 방사능 원소들의 반감기와 화학반응에서의 반감기(농도)가 있습니다. 붕괴 상수의 차이에 따라 반감기가 달라집니다. 2. 미분 방정식 1개의 입자가 단위시간당 반응할 확률이 K(붕괴상수)일 때, N개의 입자에서 단위시간당 반응할 입자수는 NK로 나타낼 수 있습니다. 이를 통해 미분방정식을 유도할 수 있으며, N에 대한 관계식을 통해 반감기를 구할 수 있습니다. 1. 반감기 반감기는 방사성 물질이나 약물 ...2025.01.21
-
LC진동 정리2025.05.011. LC진동의 정성적 분석 축전기의 전기장과 유도기의 자기장이 진동하는 현상을 전자기 진동이라고 하며, 회로 내 전자기 진동이 일어날 때 회로가 진동한다고 한다. 진동하는 LC회로에서 에너지는 주기적으로 축전기의 전기장과 유도기의 자기장 사이를 왕복한다. 저항이 없는 이상적인 LC회로에서는 축전기의 전기장과 유도기의 자기장 사이에서 발생하는 에너지 전환 이외에 다른 에너지 전환은 없으며, 에너지 보존으로 인해 진동은 무한히 계속될 것이다. 2. LC진동의 정량적 분석 LC진동하는 회로의 전체 에너지는 유도기의 자기장에 저장된 에너...2025.05.01
-
LC진동에 대해서2025.05.011. LC진동의 정성적 분석 축전기의 전기장과 유도기의 자기장이 진동하는 현상을 전자기 진동이라고 한다. 회로 내 전자기 진동이 일어날 때 회로가 진동한다고 한다. 진동하는 LC회로에서 에너지는 주기적으로 축전기의 전기장과 유도기의 자기장 사이를 왕복한다. 저항이 없는 이상적인 LC회로에서는 축전기의 전기장과 유도기의 자기장 사이에서 발생하는 에너지 전환 이외에 다른 에너지 전환은 없으며, 에너지가 보존되기 때문에 진동은 무한히 계속될 것이다. 2. LC진동의 정량적 분석 진동하는 LC회로의 전체 에너지는 유도기의 자기장에 저장된 ...2025.05.01
-
공학수학 - 미분방정식2025.01.131. 미분방정식의 용어 정의 미분방정식의 용어를 정의하고 설명하였습니다. 미분방정식은 상미분방정식(ODE), 편미분방정식(PDE), 계수, 제차 방정식, 선형 방정식 등으로 구분됩니다. 2. 1계 상미분 방정식 1계 상미분 방정식의 정의와 해법을 설명하였습니다. 완전 미분방정식과 불완전 미분방정식, 변수분리형 미분방정식, 선형 미분방정식 등의 해법을 다루었습니다. 3. 특수한 1계 미분방정식 베르누이, 리카티, 클레로 방정식 등 특수한 1계 미분방정식의 해법을 설명하였습니다. 4. n계 제차 미분방정식 n계 제차 미분방정식의 정의와...2025.01.13
-
2019 전남대 공학수학1 기말2025.04.301. Laplace 변환을 이용한 미분방정식 풀이 문제 4.1, 4.2, 4.3, 4.4에서는 Laplace 변환을 이용하여 다양한 형태의 미분방정식과 적분방정식을 풀이하는 문제가 제시되었습니다. 이를 통해 Laplace 변환의 활용 능력을 평가하고자 하는 것으로 보입니다. 2. 보통점에서의 미분방정식 해 구하기 문제 5.1에서는 보통점 x=0에 대한 미분방정식의 거듭제곱급수 해를 구하는 문제가 제시되었습니다. 이를 통해 보통점에서의 미분방정식 해법에 대한 이해도를 평가하고자 하는 것으로 보입니다. 3. 정칙특이점에서의 미분방정식 ...2025.04.30
-
좌굴해석 실험레포트2025.01.241. 좌굴하중 예측 실험 목적은 방정식을 이용하여 좌굴하중을 예상하고, 실험 장치를 통해 실재로 기둥에 하중을 가하여 기둥의 길이 및 기둥의 지지 형태에 따라 좌굴에 미치는 영향을 비교하는 것입니다. 이론적 배경에서는 핀-핀 지지된 기둥의 자유물체도를 바탕으로 축 하중과 굽힘 모멘트에 대한 미분방정식을 유도하고, 이를 통해 좌굴하중을 계산하는 과정을 설명하고 있습니다. 1. 좌굴하중 예측 좌굴하중 예측은 구조물의 안전성 평가에 매우 중요한 요소입니다. 정확한 좌굴하중 예측을 위해서는 구조물의 기하학적 형상, 재료 특성, 경계 조건 ...2025.01.24
-
인하대학교 공업수학1 문제풀이2025.11.131. 공업수학 공업수학은 공학 분야에서 필요한 수학적 개념과 기법을 다루는 학문입니다. 미분방정식, 선형대수, 복소함수론, 푸리에 급수 등 다양한 수학적 도구를 포함하며, 실제 공학 문제 해결에 필수적인 이론과 응용 방법을 제공합니다. 2. 문제풀이 문제풀이는 이론적 개념을 실제 문제에 적용하는 과정입니다. 단계별 풀이 과정을 통해 학생들이 개념을 이해하고 유사한 문제에 적용할 수 있는 능력을 개발하도록 돕습니다. 효과적인 문제풀이는 학습 효율을 높이고 실력 향상을 촉진합니다. 3. 미분방정식 미분방정식은 함수와 그 도함수 사이의 ...2025.11.13
-
한양대학교 공업수학1 1주차 과제2025.11.121. 공업수학 공업수학은 공학 분야에서 필요한 수학적 이론과 응용을 다루는 학문입니다. 미분방정식, 선형대수, 복소함수론 등 다양한 수학 개념을 포함하며, 실제 공학 문제 해결에 필수적인 도구로 활용됩니다. 한양대학교의 공업수학1 과정은 기초적인 수학 개념부터 시작하여 공학적 응용까지 체계적으로 학습하도록 구성되어 있습니다. 2. 대학 과제 및 학습 대학 과제는 학생들의 학습 성과를 평가하고 강화하기 위한 중요한 교육 도구입니다. 1주차 과제는 학기 초반에 기본 개념을 이해하고 학습 방향을 설정하는 데 중요한 역할을 합니다. 정기적...2025.11.12
-
인하대학교 공업수학1 총정리본2025.11.131. 공업수학 공업수학1은 공학 분야의 기초가 되는 수학 과목으로, 미분방정식, 선형대수, 복소수, 푸리에 급수 등 다양한 수학적 개념과 기법을 다룬다. 이러한 내용들은 전자공학, 기계공학, 화학공학 등 여러 공학 분야에서 필수적으로 활용되는 핵심 도구이다. 2. 미분방정식 미분방정식은 공업수학의 중요한 부분으로, 1계 및 고계 미분방정식의 해법을 다룬다. 변수분리, 완전미분방정식, 선형미분방정식 등 다양한 풀이 방법이 포함되며, 실제 공학 문제의 모델링과 해석에 광범위하게 적용된다. 3. 선형대수 선형대수는 행렬, 벡터, 고유값 ...2025.11.13
