
총 50개
-
부모와 자녀 키의 상관관계2025.05.151. 데이터 수집과 요약 데이터 수집 과정 및 수집된 원시 데이터의 소개, 그림형 혹은 숫자형 기술통계 제시, 기술통계 결과를 통한 시사점 제시 2. 가설제안 및 통계 분석 논리적 가설 수립, 집단간 차이분석 혹은 인과관계분석 3. 분석 결과 및 전략 제안 분석결과 요약정리, 분석결과 기반의 전략 제안 및 예상 기대효과 1. 데이터 수집과 요약 데이터 수집과 요약은 데이터 분석의 기초가 되는 매우 중요한 단계입니다. 데이터 수집 시 데이터의 출처와 신뢰성을 확인하고, 데이터의 특성을 잘 이해하는 것이 중요합니다. 또한 데이터를 요약...2025.05.15
-
연구조사방법론2025.05.151. 기술적 조사와 인과관계 조사의 차이 기술적 조사는 의사결정에 영향을 미치는 변수들 간의 상호관계를 파악하기 위한 연구이며, 횡단연구, 시계열 연구, 패널 연구, 서베이 연구 방법을 주로 사용한다. 인과관계 조사는 특정현상 간의 인과관계를 밝히기 위한 연구이며, 구체적인 인과관계 검증을 위한 실험설계를 진행한다. 2. 내적 타당성과 외적 타당성 내적 타당성은 실험이나 연구에서 실제로 측정하고자 하는 것을 얼마나 정확하게 측정하였는가에 대한 것이며, 외적 타당성은 측정하여 얻은 실험이나 연구의 결과를 실제 상황에 과연 어느 정도까...2025.05.15
-
두 모집단의 비율 차이에 관한 가설검정의 실제 응용2025.05.121. 두 모집단의 비율 차이 가설검정 이번 과제에서는 두 모집단의 비율 차이에 관한 가설검정을 다룹니다. 귀무가설(H0)은 'A집단과 B집단의 평균 차이는 없다'이고, 대립가설(H1)은 'A집단과 B집단의 평균 차이는 있다'입니다. 표본 크기 n=100인 t-검정을 이용하여 유의수준 α=0.05에서 p값이 0.001 이하이면 귀무가설을 기각하고 대립가설을 채택하며, 그 이상이면 귀무가설을 채택하게 됩니다. 2. 두 모집단 비율 차이 검정의 실제 응용 두 모집단 간의 비율 차이를 검정하는 방법은 성별, 연령, 지역 등 다양한 기준에 ...2025.05.12
-
행정계량분석 과제물 - 15문제 풀이하기2025.01.251. 확률변수 확률변수란 특정 사건이 일어날 가능성의 척도로 정의되는 실수값을 갖는 변수이다. 확률변수와 표본평균의 관계는 표본평균이 확률변수의 특성을 반영하고 확률분포에 대한 정보를 제공한다는 것이다. 특히 중심극한정리에 따르면 표본평균은 충분히 큰 표본을 사용할 때 모집단의 확률분포에 가깝게 수렴하게 된다. 2. 확률변수 변환 확률변수 Y에 상수 5를 곱하여 새로운 확률변수 Z를 만들면, Z의 분산은 Y의 분산에 5의 제곱을 곱한 값이 된다. 즉, Var(Z) = 5^2 * Var(Y)가 성립한다. 3. 정규분포 확률 계산 정규...2025.01.25
-
만 7세 남자 아동의 평균 몸무게 추정 및 췌장암 환자 데이터 분석2025.01.261. 모집단, 표본, 모수, 통계량 만 7세 남자 아동 전체는 모집단이고, 여기서 모집된 만 7세 남자 아동 100명은 표본이다. 모집단인 7세 남자 아동 전체에서 뽑은 100명의 표본을 대상으로 계산한 평균 몸무게는 통계량(statistic)을 의미한다. 2. 췌장암 환자 데이터 분석 R을 이용하여 데이터를 읽고 저장하며, 범주형 변수를 factor 형태로 저장하였다. 수축기 혈압(SBP)의 분포를 나타내는 히스토그램을 그렸다. 또한 데이터에 포함된 156명 전체의 수축기 혈압 중앙값과 95% 신뢰구간을 구하였다. 3. 가설검정 ...2025.01.26
-
시장조사론 - 표본의 크기와 정규분포, 가설검정, 통계검정 오류2025.04.281. 표본의 크기와 정규분포 표본의 크기(n)가 증가함에 따라 표본평균이나 비율의 분포가 정규분포에 근접해가는 현상을 중심극한정리라고 한다. 이는 어느 모집단에서 크기가 N개인 표본을 뽑고 평균을 구하는 행위를 반복하면 표본에 대한 평균값이 여러 개 나오게 되는데, 표본의 크기가 커질수록 분포 모양과 관계없이 정규분포에 가까워지는 현상이 나타나기 때문이다. 2. 가설검정 4단계 가설검정을 위한 4단계 과정은 다음과 같다. 1) 귀무가설(H0)과 대립가설(H1)을 수립한다. 2) 검정을 위한 표본을 추출한다. 3) 확률 실험을 설계한...2025.04.28
-
방송통신대학교 수리통계학 출석수업 과제물 (30점 만점 A+)2025.01.261. J. Neyman(네이만)과 E.S. Pearson(이곤 피어슨)의 업적과 교류 20세기 초 일군의 통계학자들이 작은 수의 데이터를 확률모형과 연결하여 분석, 추론하기 시작하면서 현대 통계학이 형성되기 시작했고, 널리 알려져 있다시피 20세기가 시작되자마자 나온 K.Pearson(칼 피어슨), W.Gosset(고셋) 등의 연구에 이어 통계적 검정법 연구에서 큰 획을 그은 인물은 R.A.Fisher(피셔), J.Neyman(네이만), E.S.Pearson(이곤 피어슨) 등이었다. 본 과제에서는 여러 통계학자들 중 서로 교류하고 ...2025.01.26
-
경영분석을 위한 기초통계 - 표본의 신빙성과 추정 방법2025.05.131. 표본의 신빙성과 모집단 추정 표본으로써 모집단을 추정하는 것은 중심극한정리와 표본 크기 결정 등의 방법을 통해 신빙성을 높일 수 있다. 중심극한정리에 따르면 표본 크기가 충분히 크면(n≥30) 표본평균의 분포가 정규분포에 근사하게 된다. 또한 모평균 추정이나 모비율 추정을 위한 표본 크기를 결정할 때 모분산, 신뢰수준, 허용오차 등을 고려하여 적절한 표본 크기를 결정할 수 있다. 2. 확률 계산 주머니에 흰 공 3개, 검은 공 3개, 파란 공 4개가 있을 때 두 개의 공을 연속해서 무작위로 뽑을 때 (1) 두 공 모두 흰색일 ...2025.05.13
-
2024년 1학기 방송통신대 기말과제물 - 행정계량분석2025.01.251. 확률변수의 개념 및 확률변수와 표본평균 간의 관계 확률변수(確率變數, random variable)란 확률실험에서 나타나는 기본결과에 특정한 수치를 부여한 것을 말한다. 확률변수는 이산형(discrete)과 연속형(continuous)으로 구분된다. 표본평균도 확률변수이며, 표본을 추출할 때마다 표본평균은 다른 값을 가질 것이다. 이는 표본평균이 추출한 확률변수값의 평균이기 때문이다. 2. 확률변수 Y의 표준편차와 새로운 확률변수 Z의 분산 확률변수 Y에 일정한 상수 k를 곱한 확률변수의 표준편차는 원래의 표준편차 σ에 상수 ...2025.01.25
-
서술통계와 추론통계의 비교 및 특성 분석2025.01.251. 서술통계 서술통계는 데이터를 요약하고 설명하는 방법으로, 데이터의 중심 경향과 분포를 나타내는 통계치를 사용한다. 평균, 중앙값, 최빈값 등의 대표값과 범위, 분산, 표준편차 등의 분포 측정치를 통해 데이터의 전반적인 특성을 파악할 수 있다. 서술통계는 데이터 분석의 첫 단계로 중요하며, 교육, 경제, 의료 등 다양한 분야에서 활용된다. 2. 추론통계 추론통계는 표본 데이터를 사용하여 모집단에 대한 결론을 도출하는 방법이다. 신뢰 구간과 가설 검정 등의 기법을 통해 표본 데이터로부터 모집단의 특성을 추정하거나 가설을 검증한다....2025.01.25