• 파일시티 이벤트
  • LF몰 이벤트
  • 서울좀비 이벤트
  • 탑툰 이벤트
  • 닥터피엘 이벤트
  • 아이템베이 이벤트
  • 아이템매니아 이벤트

솔루션을 통해 합성된 나노 결정체 배열의 형태 변경

*상*
최초 등록일
2008.06.05
최종 저작일
2008.05
28페이지/한글파일 한컴오피스
가격 3,500원 할인쿠폰받기
다운로드
장바구니

소개글

저의 공학 학사 논문 입니다.
신소재 공학 및 공대분들은 나노기술을 응용하여 비롯된 논문입니다.

4000원에 여러분의 시름이 쫙~~ 해결 될것입니다.
장담합니다.
후회 없으리라 믿습니다.

목차

1. 서론

2. 실험방법


3. 결과

4. 결론

5. 참고논문

본문내용

1. 서론

n-ZnO 반도체 나노배열은 3.37 eV의 와이드 밴드 갭, 상온에서 60 meV의 큰 엑시톤 바인딩 에너지, 근자외선(near-UV) 방출, 압전특성(piezoelectricity)같은 우수한 성질 때문에 큰 관심을 불러 일으키고 있다. 그것들은 표면 어쿠스틱 웨이브 필터, 자외선 레이저장치, 포토닉 크리스탈, 포토 디텍터(photo detectors), 필드 이미팅(emitting) 장치, 센서, 압전특성 물체, 솔라셀 전극과 같은 폭넓은 첨단 기술 분야에서 중요한 구조적 산화(oxide) 나노 구조물로 여겨졌다. 나노로드, 나노튜브, 나노와이어, 나노콤(nanocomb), 나노시트와 같이 다른 형태를 지닌 ZnO 나노크리스탈이 개발되어 졌다. 지금까지 몇몇 기술들이 주로 양극(anodic) 알루미나 산화물(AAO) 템플릿, 기상 이동법(vapor phase transport(VPT)), 화학 기상 증착법(chemical vapor deposition), 펄스 레이저 증착법(pulsed laser dposion(PLD)), 스퍼터링(sputtering), 수용액(aqueous solution) 방법을 포함하여 ZnO 나노스케일 배열을 조합하기 위해 활용 되어졌다.
수용액 접근법은 성장온도가 100℃ 이하를 갖는 단순한 솔루션 방법이며 대면적으로 배열된 ZnO나노구조물을 얻을수 있는 방법이다.
ZnO 나노로드와 나노와이어는 Zn(NO3)2․6H2O/C6H12N4와 함께 전구체(precursor)로서 수용액에서 합성된다. Li 등은 성장시간에 증가에 의해 솔루션에서 나노로드의 위 표면에 형성된 나노튜브를 보고하였다. 그리고 그들은 나노튜브가 질소(nitrogen)를 함유한 화합물(compound)로부터 유도되었다고 제안하였다. 뿐만 아니라, ZnO 나노로드, 나노와이어, 프리즘들은 과포화된 Zn(NO3)2․6H2O/NaOH 솔루션에서 조합이 되었고, 큰 종횡비(aspect ratio)(30-40)가 EDA와 알코올을 더함으로써 달성이 가능했다. Yu 등은 5% 포마미드(formamide) 수용액의 아연 박편(foil)에서 ZnO 나노로드와 나노튜브를 합성했고, 형태 변화가 나노 구조물의 위부분에 가까운 곳에 아연 수렴물을 아래로 놓을 때에 가능했다. ZnO 나노튜브와 관 모양의 위스커(whisker)들은 PEG(2000)의 도움을 받아 Zn(NO3)2․6H2O/NH3․H2O를 사용함으로써 자랐으며, 조각 조각나는 일부 결정과 함께 나노로드들은 ZnCl2, C6H12N4와 NH3로 구성된 수용액에서 관찰 되었다.

참고 자료

[1] D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Optically pumped lasing of ZnO at room temperature, Appl. Phys. Lett. 70 (1997) 2230-2232
[2] X.D. Bai, P.X. Gao, Z.L. Wang, E.G. Wang, Dual-mode mechanical
resonance of individual ZnO nanobelts, Appl. Phys. Lett. 82 (2003)
4806-4808.
[3] J.B. Lee, H.J. Kim, S.G. Kim, C.S. Hwang, S.H. Hong, Y.H. Shin, N.H.
Lee, Deposition of ZnO thin films by magnetron sputtering for a film bulk
acoustic resonator, Thin Solid Films 435 (2003) 179-185.
[4] M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, M. Kaliteevski, ZnO as
a material mostly adapted for the realization of room-temperature polariton
lasers, Phys. Rev. B 65 (2002), 161205(1-4).
[5] Y. Wu, H. Yan, M. Huang, B. Messer, J.H. Song, P. Yang, Inorganic
semiconductor nanowires: rational growth, assembly, and novel properties,
Chem. Eur. J. 8 (2002) 1260-1268.
[6] Y.F. Mestre, L.L. Zamora, J.M. Calatayud, Flow-chemiluminescence: a
growing modality of pharmaceutical analysis, Luminescence 16 (2001) 213-235.
[7] C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Field emission
from well-aligned zinc oxide nanowires grown at low temperature, Appl.
Phys. Lett. 81 (2002) 3648-3650.
[8] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin,
Fabrication and ethanol sensing characteristics of ZnO nanowire gas
sensors, Appl. Phys. Lett. 84 (2004) 3654-3656.
[9] Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide
nanowire arrays, Science 412 (2006) 242-246.
[10] C. Levy-Clement, R. Tena-Zaera, M.A. Ryan, A. Katty, G. Hodes, CdSesensitized
p-CuSCN/nanowire n-ZnO heterojunctions, Adv. Mater. 17
(2005) 1512-1515.
[11] Y. Sun, G.M. Fuge, N.A. Fox, D.J. Riley, M.N.R. Ashfold, Synthesis of
aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin
ZnO film, Adv. Mater. 17 (2005) 2477-2481.
[12] J.B. Baxter, E.S. Aydil, Epitaxial growth of ZnO nanowires on a- and cplane
sapphire, J. Cryst. Growth 274 (2005) 407-411.
[13] J.H. Park, Y.J. Choi, J.G. Park, Evolution of nanowires, nanocombs, and
nanosheets in oxide semiconductors with variation of processing conditions,
J. Eur. Ceram. Soc. 25 (2005) 2037-2040.
[14] Z. Fang, Y. Wang, X. Peng, X. Liu, C. Zhen, Structural and optical
properties of ZnO films grown on the AAO templates, Mater. Lett. 57
(2003) 4187-4190.
[15] Z. Zhang, H. Yu, X. Shao, M. Han, Near-room-temperature production of
diameter-tunable ZnO nanorod arrays through natural oxidation of zinc
metal, Chem. Eur. J. 11 (2005) 3149-3154.
[16] J.-J. Wu, S.-C. Liu, Low-temperature growth of well-aligned ZnO nanorods
by chemical vapor deposition, Adv. Mater. 14 (2002) 215-218.
[17] Y. Sun, G.M. Fuge, M.N.R. Ashfold, Growth of aligned ZnO nanorod
arrays by catalyst-free pulsed laser deposition methods, Chem. Phys. Lett.
396 (2004) 21-26.
[18] R. AlAsmar, G. Ferblantier, F. Mailly, A. Foucaran, Structural and optical
properties of ZnO fabricated by reactive e-beam and rf magnetron
sputtering techniques, Phys. Stat. Sol. C 2 (2005) 1331-1335.
[19] K. Govender, D.S. Boyle, P. O`Brien, D. Binks, D. West, D. Coleman,
Room-temperature lasing observed from ZnO nanocolumns grown by
aqueous solution deposition, Adv. Mater. 14 (2002) 1221-1224.
[20] L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from
aqueous solutions, Adv. Mater. 15 (2003) 464-466.
[21] X. Liu, Z. Jin, S. Bu, J. Zhao, K. Yu, Preparation of ZnO nanorods and
special lath-like crystals by aqueous chemical growth (ACG) method,
Mater. Sci. Eng. B 129 (2006) 139-143.
[22] Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, R.P.H. Chang, Fabrication of
nanorods and nanotubes in aqueous solutions, Chem. Mater. 17 (2005)
1001-1006.
[23] R. Peterson, C. Fields, B. Gregg, Epitaxial chemical deposition of ZnO
nanocolumns from NaOH solutions, Langmuir 20 (2004) 5114-5118.
[24] D. Wang, C. Song, Controllable synthesis of ZnO nanorod and prism
arrays in a large area, J. Phys. Chem. B 109 (2005) 12697-12700.
[25] B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the
diameter regime of 50 nm, J. Am. Chem. Soc. 125 (2003) 4430-
4431.
[26] H. Yu, Z. Zhang, M. Han, X. Hao, F. Zhu, A general low-temperature route
for large-scale fabrication of highly oriented ZnO nanorod/nanotube
arrays, J. Am. Chem. Soc. 127 (2005) 2378-2379.
[27] J. Duan, X. Huang, E. Wang, PEG-assisted synthesis of ZnO nanotubes,
Mater. Lett. 60 (2006) 1918-1921.
[28] J. Liu, X. Huang, A low-temperature synthesis of ultraviolet-light-emitting
ZnO nanotubes and tubular whiskers, J. Solid State Chem. 179 (2006)
843-848.
[29] Y. Gao, M. Nagai, Morphology evolution of ZnO thin films from aqueous
solutions and their application to solar cells, Langmuir 22 (2006) 3936-
3940.
[30] Y. Tak, K. Yong, Controlled growth of well-aligned ZnO nanorod array
using a novel solution method, J. Phys. Chem. B 109 (2005) 19263-19269.
[31] S. Yamabi, H. Imai, Growth conditions for wurtzite zinc oxide films in
aqueous solutions, J. Mater. Chem. 12 (2002) 3773-3778.
[32] W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yim, Growth mechanism and
growth habit of oxide crystals, J. Cryst. Growth 203 (1999) 186-196.
[33] X. Liu, Z. Jin, S. Bu, J. Zhao, Z. Liu, Growth of ZnO films with controlled
morphology by aqueous solution method, J. Am. Ceram. Soc. 89 (2006)
1226-1231.
*상*
판매자 유형Bronze개인

주의사항

저작권 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
환불정책

해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.

파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

이런 노하우도 있어요!더보기

찾던 자료가 아닌가요?아래 자료들 중 찾던 자료가 있는지 확인해보세요

최근 본 자료더보기
탑툰 이벤트
솔루션을 통해 합성된 나노 결정체 배열의 형태 변경
  • 레이어 팝업
  • 레이어 팝업
  • 레이어 팝업