• LF몰 이벤트
  • 파일시티 이벤트
  • 서울좀비 이벤트
  • 탑툰 이벤트
  • 닥터피엘 이벤트
  • 아이템베이 이벤트
  • 아이템매니아 이벤트

[안문]무한 소급과 순환 논증 - 논리학

*태*
최초 등록일
2000.07.03
최종 저작일
2000.07
5페이지/한글파일 한컴오피스
가격 1,000원 할인쿠폰받기
다운로드
장바구니

목차

1. 서언
2. 무한 소급은 어떤 형태를 가지고 있는가?
3. 순환 논증은 어떤 형태를 띠고 있는가?
4. 무한 소급 + 순환 논증
5. 학문에서의 예
6. 무한 소급이나 순환 논증을 피하기 위한 방안
7. 결론

본문내용

1. 서언
존재론에 관한 물음을 던지거나, 선후관계가 모호한 주장을 내세울 때 흔히 무한 소급 또는 순환 논증에 빠지게 된다. 그렇다면 과연 무한 소급이나 순환 논증의 경우 간단히 모든 경우를 paradox라고 할 수 있는가? 실제 학문 탐구에서도 이런 것들에 빠지기가 매우 쉽다. 예를 들어 존재론에서 환원의 끝이 명확하게 설정되어 있지 않은 경우 무한 소급이 가능해진다거나, 의식상의 언어구조와 언어의 사용의 관계 설정에 있어 정확한 논증이 되어 있지 않다면 순환 논증에 쉽게 빠지는 경우를 들 수 있다. 우리는 이들에 대하여 쉽게 ‘의미 없는 것이다’ 라고 이야기해 버리지만, 그런 결론에 도달하기 위해 어떤 논리적 과정을 거치는가? 여기에 대한 자료를 찾기 힘들었다.
어쩌면 실제 우리의 존재는 플라톤 주의자들이 말하는 infinity의 수학적 실재인 actual infinity 자체 Cantor의 생각을 조금 변화시킨 것이다.
일지도 모른다. 그래서 이들 무한 소급 및 순환 논증을 고찰하고 이것을 피해가기 위한 방법을 알아보도록 한다. 사실 해결방안에 대한 아이디어는 제대로 나오지 않았다.



2. 무한 소급은 어떤 형태를 가지고 있는가?
무한 소급은 본질적으로 전제를 찾아나가는 과정이 무한히 연결됨을 뜻한다. 그래서 어떤 전제 또는 전제들로부터 계속된(무한한) 결론을 이끌어내는 것과는 차이가 있다. 후자의 경우는 두 평면 거울 사이에 물체를 놓았을 때 생기는 상에 비유할 수 있다. 반사의 법칙이라는 전제와 상이라는 전제를 통해서 무한히 계속되는 상을 만들어내는 것이다. 전자의 경우를 설명하자면 그렇게 생긴 상의 양쪽 끝(무한의 끝이라는 게 말이 안되긴 하다)에서 마지막 거울(거울 2개)의 존재를 찾아나가는 과정이다. 존재 자체를 인식하는 일은 쉽다. 반사의 법칙이라는 룰을 거울이 제공하고 있기 때문이다. 그렇지만 궁극적인 목표는 거울의 실체- 거울의 크기 등등의 property-를 확인하는 작업이다

무한 소급에는 몇 가지 종류가 있다. 수학에서 사용하는 ‘무한소’의 개념에 해당하는 소급도 있고, 계속해서 말꼬리를 잡고 늘어지는 사람들의 논쟁 속에서도 쉽게 발견할 수 있다. 이를 분류해보자.(필자가 고안한 분류 방식임)

참고 자료

없음

자료후기(2)

*태*
판매자 유형Bronze개인

주의사항

저작권 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
환불정책

해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.

파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

이런 노하우도 있어요!더보기

최근 본 자료더보기
탑툰 이벤트
[안문]무한 소급과 순환 논증 - 논리학
  • 레이어 팝업
  • 레이어 팝업
  • 레이어 팝업
  • 레이어 팝업
AI 챗봇
2024년 06월 23일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:47 오후
New

24시간 응대가능한
AI 챗봇이 런칭되었습니다. 닫기