• LF몰 이벤트
  • 파일시티 이벤트
  • 캠퍼스북
  • 서울좀비 이벤트
  • 탑툰 이벤트
  • 닥터피엘 이벤트
  • 아이템베이 이벤트
  • 아이템매니아 이벤트

매트랩을 이용 자신의 목소리 취득저장 & 분석

*우*
최초 등록일
2008.12.25
최종 저작일
2008.12
18페이지/한글파일 한컴오피스
가격 5,000원 할인쿠폰받기
다운로드
장바구니

소개글

문제에 대한 설계과정 분석및 매트랩 코딩및 출력

목차

1. <신호의 취득과 저장>
1-1. 자신의 음성을 3초 동안 녹음해서 ‘자신의이름.wav’ (예: 홍길동.wav) 파일을 만들어 보라. (이 때 frequency는 8192 = 2^13으로 하라.) Matlab에서 wav 파일을 만드는 방법은 아래 Ex1을 참고한다.

1-2. 위에서 만든 .wav 파일을 읽어들여 data로 저장하고 이 데이터를 시간에 따라 plot해 보아라. Matlab에서 wav 파일을 읽어서 data로 저장하는 방법은 아래 Ex2를 참고한다.

2. <신호의 Power 및 Frequency 성분 분석>
2-1. 이 신호에서 0.5초에서 2.5초까지 2초 동안의 신호 (총 8192*2 = 2^14 크기의 vector)를 추출하여 random process X라 하고 X의 평균 power P를 구해보라.

2-2. X의 frequency 성분을 plot해 보아라. 이 때 신호의 크기가 2^14이므로 2^14 point FFT를 이용하여 magnitude를 plot해 본다. (참고: Matlab에서 fft를 수행한 후 fftshift를 해야 low frequency 성분이 plot의 가운데에 위치한다.)

2-3. 이 신호 X의 autocorrelation function을 구해보라. 신호의 sample 수가 2^14이므로 autocorrelation function의 길이는 2*2^14-1 = 2^15-1의 크기가 될 것이다. autocorrelation functioin을 plot해 보라. (이 때 Matlab내의 `autocorr` 함수를 사용하라.- autocorr는 autocorrelation의 추정치를 사용한다.)

2-4. 위에서 구한 autocorrelation의 FFT를 취하면 신호의 Power spectral density를 구할 수 있다. power spectral density의 magnitude를 plot해 보아라. (여기서도 fftshift를 해야 low frequency 성분이 plot의 한가운데 위치한다.)

3. <신호 + 잡음 분석>
3-1. 위 random process (X)에 additive white guassian noise (AWGN) N을 더하여 새로운 random process Y (= X+N) 를 만들어 보아라. 이 때 noise power는 signal power P의 10%로 한다. Y를 plot해 보고 Y를 소리로 들어보라 어떤가?

3-2. 신호 Y의 average power PY를 구해보고 실제 PY가 P의 1.1배 정도가 되는지 확인하라.

3-3. Y의 Fourier transform을 구하기 위해 Y에 대해 FFT를 수행해 보고 magnitude를 plot해 본다. Y의 FFT에서 2-2에서 구한 X의 FFT를 빼서 noise의 FFT를 구한 후 magnitude를 plot해 보라.

3-4. Y의 autocorrelation을 구해보고 plot해 보라. 2-3과 같은 과정을 거치면 구할 수 있다.

3-5. 위에서 구한 Y의 autocorrelation function과 X의 autocorrelation function과의 차이를 plot해 보라. 이를 Noise의 autocorrelation function과 비교해 보라. 어떠한가? 만약 차이가 난다면 그 원인에 대해 논하라.

3-6. Y의 autocorrelation을 FFT하면 Y의 power spectral density를 구할 수 있다. Y의 PSD를 구해 plot해 보라. Noise의 PSD도 구해 보라. Y의 PSD, X의 PSD, N의 PSD 사이의 관계에 대해 논하라.

4. <Filtering>
4-1. FIR filter의 일종인 Gaussian filter는 일종의 Low pass filter라 할 수 있다. 이 filter의 form은 다음과 같이 주어진다. 여기서 ,는 상수. Discrete인 경우에는 다음과 같은 code로 7tab filter를 만들 수 있다.

Matlab의 ‘conv’ function을 이용하여 signal Y를 위의 gaussian filter와 convolution해 보고 이를 plot 해 보라. 또한 이 신호 Z를 들어보라. 어떠한가?

4-2. 위 Y*G를 Z라는 random process라 정의할 때 Z의 FFT를 plot해 보라.

4-3. Z의 autocorrelation을 구한 후 이를 FFT해 서 Z의 PSD를 구해 보라.

4-4. Z의 PSD에서 원래 신호 X의 PSD를 뺀 차이를 구해보라. 이것이 Gaussian filtering 후 noise spectrum이다. Y의 noise power와 Z의 noise power를 비교하면 어떠한가? Filtering의 효과는 무엇인가?

본문내용

[data, fs, bits] = wavread(`greeting.wav`); % 목소리 데이터 불러옴
soundsc(data, fs); % 목소리 재생시킴
t=(1:length(data))/fs; % t(time) 범위 설정
figure(1);
plot(t,data); % 목소리 파형출력
title(`내 목소리 출력파형`), xlabel(`Time`), ylabel(`Amplitude`);
f=[-fs:fs-1]; % f(frequeny) 범위 설정
t1=[1:2*fs]; % t1(time) 범위 설정
⇒ 문제의 예시를 참고하여 내 목소리 wav 파일을 읽어들여 data로 저장한 후 그래프로 출력파형을 관찰하였다.

참고 자료

없음
*우*
판매자 유형Bronze개인

주의사항

저작권 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
환불정책

해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.

파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

이런 노하우도 있어요!더보기

최근 본 자료더보기
탑툰 이벤트
매트랩을 이용 자신의 목소리 취득저장 &amp; 분석
  • 레이어 팝업
  • 레이어 팝업
  • 레이어 팝업