PARTNER
검증된 파트너 제휴사 자료

Building of an Optimal Algorithm for Nearest Navigational Danger Detection in ENC using DP

방대한 850만건의 자료 중 주제별로 만들수 있는 최적의 산출물을 해피 캠퍼스에서 체험 하세요 전문가의 지식과 인사이트를 활용하여 쉽고 폭넓게 이해하고 적용할수 있는 기회를 놓치지 마세요
10 페이지
어도비 PDF
최초등록일 2024.01.29 최종저작일 2023.12
10P 미리보기
Building of an Optimal Algorithm for Nearest Navigational Danger Detection in ENC using DP
  • * 본 문서는 배포용으로 복사 및 편집이 불가합니다.

    미리보기

    서지정보

    · 발행기관 : 국제이네비해양경제학회
    · 수록지 정보 : International Journal of e-Navigation and Maritime Economy / 21권
    · 저자명 : Jisoo KIM, Hongrai CHO, Unggyu KIM, Byunggong HWANG

    목차

    1. Introduction
    2. The Analysis of Navigational Danger Detection in ENC
    2.1. Data Structure of S-57 ENC
    2.2. ADMAR
    3. Optimal Algorithm for Nearest Navigational Danger Detection
    3.1. Hierarchical Aggregation Procedure
    3.2. Search Procedure
    4. Application and Validation of Algorithm
    4.1. Validation Environment
    4.2. Validation Results
    5. Conclusions
    6. Acknowledgement
    References

    영어초록

    Efficiently detecting the nearest navigational dangers in Electronic Chart Display and Information Systems (ECDIS) remains pivotal for maritime safety. However, the software implementation of ADMAR(Automatic Distance measurement and Ranging) functionality faced challenges, necessitating extensive computations across ENC cells and impacting real-time performance. To address this, we present a novel method employing dynamic programming. Our proposed algorithm strategically organizes nodes into a tree structure, optimizing the search process towards nodes likely to contain navigational hazards. Implementation of this method resulted in a notable sevenfold reduction in computation time compared to the conventional Brute Force approach. Our study established a direct correlation between the ADMAR functionality and node count, achieving error margins deemed acceptable for practical navigation scenarios. Despite this theoretical progress, minor errors in results prompt further refinement. Consequently, future iterations will explore varying values for N, considering hierarchy and cell sizes to enhance algorithmic precision. This research signifies a potential advancement in optimizing navigational danger detection within ECDIS, offering a promising avenue for improved efficiency. By introducing a dynamic programming-based approach, we have streamlined the detection process while acknowledging the scope for algorithmic refinement in subsequent studies. Our findings underline the feasibility of employing dynamic programming to enhance navigational danger detection, emphasizing its potential in ensuring maritime safety. This work lays a foundation for future research endeavors, aiming to fine-tune algorithms and advance navigational safety measures in ECDIS.

    참고자료

    · 없음
  • 자료후기

      Ai 리뷰
      이 자료는 내용의 깊이가 뛰어나고, 주제에 대한 체계적인 접근이 인상적이었습니다. 과제를 작성하는데 많은 도움이 되었습니다. 여러분께도 추천합니다!
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 본 학술논문은 (주)코리아스칼라와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
        본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
    문서 초안을 생성해주는 EasyAI
    안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 07월 16일 수요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    12:21 오후