• 통큰쿠폰이벤트-통합

sas(e-miner)를 이용한 의사결정 나무 분석 레포트

*도*
개인인증판매자스토어
최초 등록일
2006.11.13
최종 저작일
2006.01
10페이지/ 한컴오피스
가격 1,500원 할인쿠폰받기
다운로드
장바구니
  • EasyAI 홍보배너

소개글

sas프로그램 내에 있는 E-Miner를 이용하여 의사결정나무를 직접 실행해보고 결과를 해석한 리포트이다.
<< 의사 결정 나무 >>
■ 의사결정나무(Decision Tree)의 개념
▷ 의사결정나무 : 의사결정규칙(decision rule)을 나무구조로 도표화하여 분류와 예측(prediction)을 수행하는 분석방법이다.
▷ 의사결정나무의 구성요소
뿌리마디(root node) : 나무가 시작되는 마디로써 전체자료로 이루어져 있다.
자식마디(child node) : 하나의 마디로부터 분리되어 나간 2개 이상의 마디들을 의미한
부모마디(parent node) : 자식마디의 상위마디를 의미한다.
끝마디(terminal node) 또는 잎(leaf) : 각 나무줄기의 끝에 위치하고 있는 마디를 의미
중간마디(internal node) : 나무구조의 중간에 있는 끝마디가 아닌 마디들을 의미한다.
가지(branch) : 하나의 마디로부터 끝마디까지 연결된 일련의 마디들을 의미한다.
가지의 깊이(depth) : 가지를 이루고 있는 마디의 개수
▷ 의사결정나무의 형성과정
의사결정나무의 형성 : 분석의 목적과 자료구조에 따라서 적절한 분리기준(split criterion)
과 정지규칙(stopping rule)을 지정하여 의사결정나무를 얻는다.
가지치기 : 분류오류(classification error)를 크게 할 위험(risk)이 높거나 부적절한
추론규칙(induction rule)을 가지고 있는 가지(branch)를 제거한다.
타당성 평가 : 이익도표(gains chart)나 위험도표(risk chart) 또는 검증용 자료(test data)
에 의한 교차 타당성(cross validation) 등을 이용하여 의사결정나무를 평가한다.
해석 및 예측 : 의사결정나무를 해석하고 예측모형을 설정한다.

■ 순수도 와 분리기준
▷ 분리기준 : 하나의 부모마디로부터 자식마디들이 형성될때, 입력변수(input)의 선택과
범주(category)의 병합이 이루어 질 기준을 의미한다.
▷ 순수도(purity) 또는 불순도(impurity) : 부모마디로부터 자식마디가 형성되었을때
목표변수의 분포를 구별하는 정도
▷ 이산형 목표변수에 사용되는 분리기준 : 빈도(frequency)에 기초
카이제곱통계량(Chi-Square statistic)의 p-값 : p-값이 가장 작은 예측변수와 그 때의 최적분리에 의해서 자식마디를 형성
지니 지수(Gini index) : 불순도를 측정하는 하나의 지수로서 지니지수를 가장 감소시켜 주는 예측변수와 그 때의 최적분리에 의해서 자식마디를 선택
엔트로피 지수(Entropy index) : 다항분포에서의 우도비 검정통계량을 사용하는 것과 같은 것으로 알려져 있음. 이 지수가 가장 작은 예측변수와 그 때의 최적분리에 의해서 자식마디를 형성
▷ 연속형 목표변수에 사용되는 분리기준 : 목표변수의 평균(mean)에 기초
분산분석에서의 F 통계량 : p-값이 가장 작은 예측변수와 그 때의 최적분리에 의해서 자식마디가 형성
분산의 감소량(Variance reduction) : 예측오차를 최소화하는 것과 동일한 기준으로 분산의 감소량을
최대화하는 기준의 최적분리에 의해서 자식마디가 형성

▷ 정지규칙(Stopting rule) : 더 이상 분리가 일어나지 않고 현재의 마디가 끝마디가 되도록하는 여러가지 규칙

▷ 가지치기(Pruning) : 지나치게 많은 마디를 가지는 의사결정나무는 새로운 자료에 적용할 때 예측오차
(prediction error)가 매우 클 가능성이 있다. 따라서 형성된 의사결정나무에서 적절하지 않은 마디를 제거
하여, 적당한 크기의 부나무(subtree)구조를 가지는 의사결정나무를 최종적인 예측모형으로 선택하는 것이
바람직하다.

■ 의사결정나무의 장점
▷ 해석의 용이성 : 중요한 입력변수를 찾기가 쉽고 모형이 간단하여 이해가 쉽다.
▷ 교호효과의 해석 : 교호효과(interaction)과 비선형성(nonlinearity)을 자동적으로 찾아내는 알고리즘이다.
▷ 비모수적 모형 : 선형성(linearity)이나 정규성(normality) 또는 등분산성(equal variance)가정이 필요없다.

목차

<< 의사 결정 나무 >>
1. 예제 자료와 분석의 목적
2. 분석흐름도의 작성과 각 노드의 설정
3. 모형의 평가와 결과보기
4. 의사결정나무의 수정
5. 의사결정나분석의 대화식 수행
6. 의사결정나무에 의한 차원축소 (변수 선택)

본문내용

<< 의사 결정 나무 >>

1. 예제 자료와 분석의 목적
▶ 분석의 목적
- 한 은행의 신용평가 부서에서는 대출 승인에 대한 의사결정과정을 자동화 하기 위해서 각 고 객에 대한 신용평가점수 모형을 만들고자 한다.
▶ 분석 자료 : HMEQ 데이터세트 : <표 8-1을 참조>
- 5960명에 대해서 대출과 관련된 고객정보를 포함.
- 목표변수 BAD=1, 미상환(1189명 = 20%정도), BAD=0, 상환.
- 각 고객에 대해서 12개의 입력 변수

■ Chi-Square Test : 부모마디로부터 자식마디로 분리하기 위해 Pearson의 카이제곱 통계량을 분 리기준으로 설정.
■ Entropy Reduction: 각 마디에서의 불순도(impurity)를 재는 측도인 엔트로피 지수(entropy index)를 분리기준으로 설정.


■ Gini Reduction: 각 마디에서의 불순도를 재는 측도인 지니 지수(gini index)를 분리기준으로 설 정.
■ Minimum number of observation in a leaf : 끝마디에 포함될 관측개체의 최소 개수를 의미
■ Observation required for a split search
;임의의 분리기준에 의해 부모마디가 자식마디로 분리 되기 위해 요구되는 관측 개체의 수
■ Maximum number of branches from a node: 자식마디가 형성될 때 고려될 최대의 분리 개수.
■ Maximum depth of tree: 끝마디 깊이의 최대값.
■ Splitting rules saved in each node: 각 마디에서 분리기준이 큰 순서대로 몇 개까지의 분리규칙을 저장할 것인지를 지정
■ Surrogate rules saved in each node: 일치도(agreement)가 큰 변수에 의해서 결측값을 대체하

참고 자료

없음
*도*
판매자 유형Bronze개인인증

주의사항

저작권 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
환불정책

해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.

파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

이런 노하우도 있어요!더보기

찾던 자료가 아닌가요?아래 자료들 중 찾던 자료가 있는지 확인해보세요

  • 데이터 마이닝 프로젝트 보고서 42페이지
    형 변수였다. 그래서 다음과 같은 sas코드를 이용하여 문자형 변수 ... 은 어느 정도 감소하다가 다시 증가하고 있다. E-Miner에서는 평가 ... ://blog.naver.com/purun90" 우리아빠 의사결정나무의 정분
최근 본 자료더보기
  • 괜괜괜 영화 시사회
탑툰 이벤트
sas(e-miner)를 이용한 의사결정 나무 분석 레포트
  • 유니스터디 이벤트
AI 챗봇
2024년 12월 12일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:41 오후
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감