GPU를 이용한 Quantum-Inspired Evolutionary Algorithm 가속

저작시기 2012.08 |등록일 2013.03.05 파일확장자어도비 PDF (pdf) | 9페이지 | 가격 6,000원
다운로드
장바구니관심자료
상세신규 배너

* 본 문서는 배포용으로 복사 및 편집이 불가합니다.

서지정보

발행기관 : 대한전자공학회 수록지정보 : 전자공학회논문지-SD / 49권 / 8호
저자명 : 류지현, 박한민, 최기영

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
참고문헌
저자소개

한국어 초록

Quantum-Inspired Evolutionary Algorithm(QEA)은 알고리즘 자체에 충분한 data-level parallelism이 내재되어 있어 GPU를 이용한 가속에 용이하다. 그러나 효과적인 실행시간의 단축을 위해서는 CPU와 GPU에의 적절한 task-mapping이 필요하다. 이때 단순히 함수 자체의 병렬성만을 고려하는 것이 아니라 CPU와 GPU간의 데이터 전송도 고려하여 task-mapping을 할 필요가 있다. 또한 추가적인 성능향상을 위하여 zero-copy host memory와 적절한 execution configuration의 사용, 그리고 memory coalescing 등을 이용할 수 있다. 그 결과 30,000개의 item수를 가진 0-1 knapsack problem에 대한 QEA의 수행을 multi-threading CPU에 비해 평균 3.69배 빠르게 할 수 있었다.

영어 초록

Quantum-Inspired Evolutionary Algorithm(QEA) contains sufficient data-level parallelism to be naturally accelerated on GPUs. For an efficient reduction of execution time, however, careful task-mapping should be done to properly reflect the characteristics of CPU and GPU. Furthermore, when deciding which part of the application should run on GPU, we need to consider the data transfer between CPU and GPU memory spaces as well as the data-level parallelism. In addition, the usage of zero-copy host memory, proper choice of the execution configuration, and thread organization considering memory coalescing is important to further reduce the execution time. With all these techniques, we could run QEA 3.69 times faster on average in comparison with the multi-threading CPU for the case of 0-1 knapsack problem with 30,000 items.

참고 자료

없음
  • 구매평가(0)
  • 구매문의(0)
      최근 구매한 회원 학교정보 보기
      1. 최근 2주간 다운받은 회원수와 학교정보이며
         구매한 본인의 구매정보도 함께 표시됩니다.
      2. 매시 정각마다 업데이트 됩니다. (02:00 ~ 21:00)
      3. 구매자의 학교정보가 없는 경우 기타로 표시됩니다.
      4. 지식포인트 보유 시 지식포인트가 차감되며
         미보유 시 아이디당 1일 3회만 제공됩니다.
      상세하단 배너
      우수 콘텐츠 서비스 품질인증 획득
      최근 본 자료더보기
      상세우측 배너
      상세우측 배너
      GPU를 이용한 Quantum-Inspired Evolutionary Algorithm 가속
      페이지
      만족도 조사

      페이지 사용에 불편하신 점이 있으십니까?

      의견 보내기