• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

재난통계를 활용한 대설피해 예측 및 대설 피해 적설심 기준 결정 방안 (Estimation of Snow Damage and Proposal of Snow Damage Threshold based on Historical Disaster Data)

7 페이지
기타파일
최초등록일 2025.06.01 최종저작일 2017.04
7P 미리보기
재난통계를 활용한 대설피해 예측 및 대설 피해 적설심 기준 결정 방안
  • 미리보기

    서지정보

    · 발행기관 : 대한토목학회
    · 수록지 정보 : 대한토목학회논문집(국문) / 37권 / 2호 / 325 ~ 331페이지
    · 저자명 : 오영록, 정건희

    초록

    최근 세계적인 기상이변으로 인해 자연재해가 빈번하게 발생하고 있으며, 겨울철 대표적인 자연재해인 대설에 의한 재난 발생 빈도도 증가하고 있다. 그러므로 대설 피해 저감이나 대설 피해액 예측에 대한 연구들이 다수 수행되고 있다. 본 연구에서는 과거 22년간 발생했던 대설 피해 사례를 재해연보에서 조사하여 시군구별로 빈도 분석을 하였다. 그 결과 대설 피해 발생 빈도가 높았던 충청도, 전라도, 강원도를 대상으로 대설피해액 예측을 위한 다중회귀모형을 구축하였다. 설명변수로 기상학적 요소인 최심신적설량, 최고기온, 최저기온, 상대습도와 사회․ 경제적인 요소인 시군구의 면적과 비닐하우스 면적, 농가인구, 60세 이상 농가인구를 선택하여 모형을 구축하였다. 또한 대설 피해를 야기하는 적설심에 대한 분석을 위해 최심신적설심 별 구간을 구분하여 모형을 별도로 구축하였다. 그 결과, 적설심이 낮았던 피해 사례까지를 모두 고려한 경우에는 모형의 예측력이 매우 낮았지만, 피해를 야기한 적설심이 큰 경우만을 분리하여 모형을 구축한 경우에는 70% 이상의 매우 향상된 예측력을 보였다. 이는 적설심이 25 cm 이상 큰 경우에는 적설하중에 의해 설해가 발생할 가능성이 있으며, 이를 대설 피해 기준 적설심이라고 가정할 수 있을 것으로 판단되었다.

    영어초록

    Due to the climate change, natural disaster has been occurred more frequently and the number of snow disasters has been alsoincreased. Therefore, many researches have been conducted to predict the amount of snow damages and to reduce snow damages. Inthis study, snow damages over last 21 years on the Natural Disaster Report were analyzed. As a result, Chungcheong-do, Jeolla-do,and Gangwon-do have the highest number of snow disasters. The multiple linear regression models were developed using the snowdamage data of these three provinces. Daily fresh snow depth, daily maximum, minimum, and average temperatures, and relativehumidity were considered as possible inputs for climate factors. Inputs for socio-economic factors were regional area, greenhouse area, farming population, and farming population over 60. Different regression models were developed based on the daily maximum snow depth. As results, the model efficiency considering all damage (including low snow depth) data was very low, however, the model only using the high snow depth (more than 25 cm) has more than 70% of fitness. It is because that, when the snow depth is high, the snow damage is mostly caused by the snow load itself. It is suggested that the 25 cm of snow depth could be used as the snow damage thresholdbased on this analysis.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한토목학회논문집(국문)”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:28 오후