• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

인공지능 기반의 말더듬 자동분류 방법: 합성곱신경망(CNN) 활용 (AI-based stuttering automatic classification method: Using a convolutional neural network)

10 페이지
기타파일
최초등록일 2025.04.11 최종저작일 2023.12
10P 미리보기
인공지능 기반의 말더듬 자동분류 방법: 합성곱신경망(CNN) 활용
  • 미리보기

    서지정보

    · 발행기관 : 한국음성학회
    · 수록지 정보 : 말소리와 음성과학 / 15권 / 4호 / 71 ~ 80페이지
    · 저자명 : 박진, 이창균

    초록

    본 연구는 말더듬 화자들의 음성 데이터를 기반으로 하여, 인공지능 기술을 활용한 말더듬 자동 식별 방법을 개발하는 것을 주목적으로 진행되었다. 특히, 한국어를 모국어로 하는 말더듬 화자들을 대상으로 CNN(convolutional neural network) 알고리즘을 활용한 식별기 모델을 개발하고자 하였다. 이를 위해 말더듬 성인 9명과 정상화자 9명을 대상으로 음성 데이터를 수집하고, Google Cloud STT(Speech-To-Text)를 활용하여 어절 단위로 자동 분할한 후유창, 막힘, 연장, 반복 등의 라벨을 부여하였다. 또한 MFCCs(mel frequency cepstral coefficients)를 추출하여 CNN 알고리즘을 기반한 말더듬 자동 식별기 모델을 수립하고자 하였다. 연장의 경우 수집결과가 5건으로 나타나 식별기모델에서 제외하였다. 검증 결과, 정확도는 0.96으로 나타났고, 분류성능인 F1-score는 ‘유창’은 1.00, ‘막힘’은 0.67, ‘반복’은 0.74로 나타났다. CNN 알고리즘을 기반한 말더듬 자동분류 식별기의 효과를 확인하였으나, 막힘 및 반복유형에서는 성능이 미흡한 것으로 나타났다. 향후 말더듬의 유형별 충분한 데이터 수집을 통해 추가적인 성능 검증이 필요함을 확인하였다. 향후 말더듬 화자의 발화 빅데이터 확보를 통해 보다 신뢰성 있는 말더듬 자동 식별 기술의 개발과 함께 이를 통한 좀 더 고도화된 평가 및 중재 관련 서비스가 창출되기를 기대해 본다.

    영어초록

    This study primarily aimed to develop an automated stuttering identification and classification method using artificial intelligence technology. In particular, this study aimed to develop a deep learning-based identification model utilizing the convolutional neural networks (CNNs) algorithm for Korean speakers who stutter. To this aim, speech data were collected from 9 adults who stutter and 9 normally-fluent speakers. The data were automatically segmented at the phrasal level using Google Cloud speech-to-text (STT), and labels such as ‘fluent’, ‘blockage’, prolongation’, and ‘repetition’ were assigned to them. Mel frequency cepstral coefficients (MFCCs) and the CNN-based classifier were also used for detecting and classifying each type of the stuttered disfluency. However, in the case of prolongation, five results were found and, therefore, excluded from the classifier model. Results showed that the accuracy of the CNN classifier was 0.96, and the F1-score for classification performance was as follows: ‘fluent’ 1.00, ‘blockage’ 0.67, and ‘repetition’ 0.74. Although the effectiveness of the automatic classification identifier was validated using CNNs to detect the stuttered disfluencies, the performance was found to be inadequate especially for the blockage and prolongation types. Consequently, the establishment of a big speech database for collecting data based on the types of stuttered disfluencies was identified as a necessary foundation for improving classification performance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“말소리와 음성과학”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 29일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:21 오후